test_fold_op.py 8.5 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16 17

import numpy as np
X
xiaoting 已提交
18
from op_test import OpTest
19

X
xiaoting 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
import paddle
import paddle.fluid as fluid
from paddle.fluid import core

paddle.enable_static()


class TestFoldOp(OpTest):
    """
    This is for test on fold Op
    """

    def init_data(self):
        self.batch_size = 3
        self.input_channels = 3 * 2 * 2
        self.length = 12
        self.kernel_sizes = [2, 2]
        self.strides = [1, 1]
        self.paddings = [0, 0, 0, 0]
        self.dilations = [1, 1]
        self.output_sizes = [4, 5]
        input_shape = [self.batch_size, self.input_channels, self.length]
        self.x = np.random.rand(*input_shape).astype(np.float64)

    def calc_fold(self):
        output_shape = [0] * 4
        output_shape[0] = self.batch_size
47 48 49
        output_shape[1] = int(
            self.input_channels / (self.kernel_sizes[0] * self.kernel_sizes[1])
        )
X
xiaoting 已提交
50 51 52 53
        output_shape[2] = self.output_sizes[0]
        output_shape[3] = self.output_sizes[1]
        dkernel_h = self.dilations[0] * (self.kernel_sizes[0] - 1) + 1
        dkernel_w = self.dilations[1] * (self.kernel_sizes[1] - 1) + 1
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
        col_height = (
            int(
                (
                    self.output_sizes[0]
                    + self.paddings[0]
                    + self.paddings[2]
                    - dkernel_h
                )
                / self.strides[0]
            )
            + 1
        )
        col_width = (
            int(
                (
                    self.output_sizes[1]
                    + self.paddings[1]
                    + self.paddings[3]
                    - dkernel_w
                )
                / self.strides[1]
            )
            + 1
        )
X
xiaoting 已提交
78
        output = np.zeros(output_shape).astype(np.float64)
79
        # ------------- calculate output ------------- #
X
xiaoting 已提交
80 81 82 83
        for b in range(output_shape[0]):
            for c in range(self.input_channels):
                w_offset = int(c % self.kernel_sizes[1])
                h_offset = int(
84 85
                    (c / self.kernel_sizes[1]) % self.kernel_sizes[0]
                )
X
xiaoting 已提交
86 87
                c_out = int(c / self.kernel_sizes[0] / self.kernel_sizes[1])
                for h in range(col_height):
88 89 90 91 92
                    h_out = int(
                        h * self.strides[0]
                        - self.paddings[0]
                        + h_offset * self.dilations[0]
                    )
X
xiaoting 已提交
93
                    for w in range(col_width):
94 95 96 97 98
                        w_out = int(
                            w * self.strides[1]
                            - self.paddings[1]
                            + w_offset * self.dilations[1]
                        )
X
xiaoting 已提交
99
                        if (h_out >= 0 and h_out < self.output_sizes[0]) and (
100 101 102 103 104
                            w_out >= 0 and w_out < self.output_sizes[1]
                        ):
                            output[b, c_out, h_out, w_out] += self.x[
                                b, c, w + col_width * h
                            ]
X
xiaoting 已提交
105 106 107 108 109 110 111 112 113 114 115 116

        self.outputs = output

    def set_data(self):
        self.init_data()
        self.calc_fold()
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x)}
        self.attrs = {
            'kernel_sizes': self.kernel_sizes,
            'paddings': self.paddings,
            'dilations': self.dilations,
            'strides': self.strides,
117
            'output_sizes': self.output_sizes,
X
xiaoting 已提交
118 119 120 121 122
        }
        self.outputs = {'Y': self.outputs}

    def setUp(self):
        self.op_type = 'fold'
X
xiaoting 已提交
123
        self.python_api = paddle.nn.functional.fold
X
xiaoting 已提交
124 125 126
        self.set_data()

    def test_check_output(self):
X
xiaoting 已提交
127
        self.check_output(check_eager=True)
X
xiaoting 已提交
128 129

    def test_check_grad(self):
X
xiaoting 已提交
130
        self.check_grad(['X'], 'Y', check_eager=True)
X
xiaoting 已提交
131 132 133 134


class TestFoldAPI(TestFoldOp):

135
    # This is for test on paddle.nn.Fold
X
xiaoting 已提交
136 137 138

    def setUp(self):
        self.op_type = 'fold'
X
xiaoting 已提交
139
        self.python_api = paddle.nn.functional.fold
X
xiaoting 已提交
140 141 142 143 144 145 146 147 148 149 150 151
        self.set_data()
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def test_api(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                input = paddle.to_tensor(self.x)
                m = paddle.nn.Fold(**self.attrs)
                m.eval()
                result = m(input)
152 153 154
                np.testing.assert_allclose(
                    result.numpy(), self.outputs['Y'], rtol=1e-05
                )
X
xiaoting 已提交
155 156 157 158 159 160 161 162

    def test_info(self):
        str(paddle.nn.Fold(**self.attrs))


class TestFoldOpError(unittest.TestCase):
    def test_errors(self):
        from paddle.fluid.framework import Program, program_guard
163
        from paddle.nn.functional import fold
164

X
xiaoting 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
        with program_guard(Program(), Program()):

            def test_input_shape():
                # input_shpae must be 3-D
                x = paddle.randn(shape=[2, 3, 6, 7], dtype="float32")
                out = fold(x, output_sizes=[2, 3], kernel_sizes=[2, 2])

            def test_kernel_shape():
                # kernel_size must be 2
                x = paddle.randn(shape=[2, 6, 6], dtype="float32")
                out = fold(x, output_sizes=[2, 3], kernel_sizes=[2, 2, 3])

            def test_padding_shape():
                # padding_size must be 2 or 4
                x = paddle.randn(shape=[2, 6, 6], dtype="float32")
180 181 182 183 184 185
                out = fold(
                    x,
                    output_sizes=[2, 3],
                    kernel_sizes=[2, 2],
                    paddings=[2, 2, 3],
                )
X
xiaoting 已提交
186 187

            def test_dilations_shape():
188
                # dialtions_size must be 2
X
xiaoting 已提交
189
                x = paddle.randn(shape=[2, 6, 6], dtype="float32")
190 191 192 193 194 195
                out = fold(
                    x,
                    output_sizes=[2, 3],
                    kernel_sizes=[2, 2],
                    dilations=[2, 2, 3],
                )
X
xiaoting 已提交
196 197 198 199

            def test_strides_shape():
                # strids_size must be 2
                x = paddle.randn(shape=[2, 6, 6], dtype="float32")
200 201 202 203 204 205
                out = fold(
                    x,
                    output_sizes=[2, 3],
                    kernel_sizes=[2, 2],
                    strides=[2, 2, 3],
                )
X
xiaoting 已提交
206 207 208 209

            def test_output_size():
                # im_h * im_w must be L
                x = paddle.randn(shape=[2, 6, 6], dtype="float32")
210 211 212
                out = fold(
                    x, output_sizes=[6, 6], kernel_sizes=[2, 2], strides=[1, 1]
                )
X
xiaoting 已提交
213

X
xiaoting 已提交
214 215 216
            def test_output_size_2():
                # out_size must GT 1
                x = paddle.randn(shape=[2, 6, 6], dtype="float32")
217 218 219 220 221 222
                out = fold(
                    x,
                    output_sizes=[0.1, 0.2],
                    kernel_sizes=[2, 2],
                    strides=[1, 1],
                )
X
xiaoting 已提交
223

X
xiaoting 已提交
224 225 226
            def test_block_h_w():
                # test_block_h_w GT 0
                x = paddle.randn(shape=[2, 1, 1], dtype="float32")
227 228 229
                out = fold(
                    x, output_sizes=[1, 1], kernel_sizes=[2, 2], strides=1
                )
X
xiaoting 已提交
230 231 232

            def test_GT_0():
                x = paddle.randn(shape=[2, 1, 1], dtype="float32")
233 234 235 236 237 238 239 240
                out = fold(
                    x,
                    output_sizes=[0, 0],
                    kernel_sizes=[0, 0],
                    dilations=0,
                    paddings=[0, 0],
                    strides=0,
                )
X
xiaoting 已提交
241 242 243 244 245 246 247

            self.assertRaises(AssertionError, test_input_shape)
            self.assertRaises(AssertionError, test_kernel_shape)
            self.assertRaises(ValueError, test_padding_shape)
            self.assertRaises(AssertionError, test_dilations_shape)
            self.assertRaises(AssertionError, test_strides_shape)
            self.assertRaises(ValueError, test_output_size)
248
            self.assertRaises(TypeError, test_output_size_2)
X
xiaoting 已提交
249 250 251 252 253 254
            self.assertRaises(ValueError, test_block_h_w)
            self.assertRaises(ValueError, test_GT_0)


if __name__ == '__main__':
    unittest.main()