device_worker.h 27.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

H
hutuxian 已提交
17
#include <atomic>
18 19 20 21
#include <fstream>
#include <map>
#include <memory>
#include <mutex>  // NOLINT
Z
zhang wenhui 已提交
22
#include <set>
23
#include <string>
X
xujiaqi01 已提交
24 25 26 27
#include <thread>         // NOLINT
#include <unordered_map>  // NOLINT
#include <unordered_set>  // NOLINT
#include <utility>        // NOLINT
28 29
#include <vector>

30 31 32
#if defined(PADDLE_WITH_PSCORE)
#include "paddle/fluid/distributed/ps/wrapper/fleet.h"
#endif
33
#include "paddle/fluid/framework/barrier.h"
34
#include "paddle/fluid/framework/data_feed.h"
35
#include "paddle/fluid/framework/executor_gc_helper.h"
T
Thunderbrook 已提交
36
#include "paddle/fluid/framework/heter_util.h"
37 38 39 40 41 42 43 44 45
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/operators/reader/blocking_queue.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/timer.h"
46
#include "paddle/phi/backends/dynload/port.h"
47

W
wanghuancoder 已提交
48 49 50 51 52 53 54
namespace paddle {
namespace framework {
class ProgramDesc;
class Scope;
}  // namespace framework
}  // namespace paddle

55
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
56
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
H
hutuxian 已提交
57 58
#endif

59 60 61
namespace paddle {
namespace framework {

62
std::string PrintLodTensor(phi::DenseTensor* tensor,
D
danleifeng 已提交
63 64 65 66
                           int64_t start,
                           int64_t end,
                           char separator = ',',
                           bool need_leading_separator = false);
67
void PrintLodTensor(phi::DenseTensor* tensor,
D
danleifeng 已提交
68 69
                    int64_t start,
                    int64_t end,
70
                    std::string& output_str,  // NOLINT
D
danleifeng 已提交
71 72
                    char separator = ',',
                    bool need_leading_separator = false);
73 74
std::pair<int64_t, int64_t> GetTensorBound(phi::DenseTensor* tensor, int index);
bool CheckValidOutput(phi::DenseTensor* tensor, size_t batch_size);
75

76 77
class FleetWrapper;

T
Thunderbrook 已提交
78
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
79 80 81
class HeterWrapper;
#endif

82 83 84 85
class PullDenseWorker {
 public:
  virtual ~PullDenseWorker() {}
  virtual void Initialize(const TrainerDesc& param);
86 87
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  void AddStream(const gpuStream_t stream) { copy_streams_.push_back(stream); }
T
Thunderbrook 已提交
88
#endif
T
Thunderbrook 已提交
89

90 91
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) || \
    defined(PADDLE_WITH_XPU)
T
Thunderbrook 已提交
92 93 94 95 96 97
  void AddPlace(const paddle::platform::Place place) {
    places_.push_back(place);
  }

  void AddThreadScope(Scope* scope) { thread_scopes_.push_back(scope); }
#endif
98 99
  int Start();
  void Stop();
100
  void SetRootScope(Scope* scope) { root_scope_ = scope; }
101 102 103
  void IncreaseThreadVersion(int thread_id, uint64_t table_id);
  void ResetThreadVersion(uint64_t table_id);
  void Wait(std::vector<::std::future<int32_t>>* status_vec);
104
  void PullDense(bool force_update = false);
T
Thunderbrook 已提交
105
  void CreatePinVar();
T
Thunderbrook 已提交
106
  void MergeDenseParam();
107 108
  int GetThreadIdByScope(const Scope* scope);
  void SetThreadIdByScope(const Scope* scope, int tid);
109 110 111 112 113 114 115
  static std::shared_ptr<PullDenseWorker> GetInstance() {
    if (NULL == s_instance_) {
      s_instance_.reset(new paddle::framework::PullDenseWorker());
    }
    return s_instance_;
  }

116 117
  static std::shared_ptr<PullDenseWorker> s_instance_;

118
 private:
119
  PullDenseWorker() : root_scope_(NULL) {}
120 121 122 123
  void Run();
  bool CheckUpdateParam(uint64_t table_id);

 private:
124 125 126
#if defined(PADDLE_WITH_PSCORE)
  std::shared_ptr<paddle::distributed::FleetWrapper> fleet_ptr_;
#else
127
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
128 129
#endif

130
  PullDenseWorkerParameter param_;
H
heqiaozhi 已提交
131
  DownpourWorkerParameter dwp_param_;
132 133 134
  Scope* root_scope_;
  bool running_;

D
dongdaxiang 已提交
135 136 137 138 139
  static std::map<uint64_t, uint64_t> last_versions_;
  static std::map<uint64_t, uint64_t> current_version_;
  static std::mutex mutex_for_version_;
  static std::map<uint64_t, std::vector<uint64_t>> training_versions_;
  static std::map<uint64_t, std::vector<std::string>> dense_value_names_;
140 141 142 143 144 145 146 147 148 149 150 151 152 153

  std::thread t_;
  int thread_num_;
  int sleep_time_ms_;
  int threshold_;

  std::vector<::std::future<int32_t>> pull_dense_status_;
  uint32_t pull_dense_fail_times_ = 0;
  std::vector<float> base_norm_param_;
  std::vector<float> mean_;
  std::vector<float> scale_;
  float squared_sum_epsilon_ = 1e-4;
  std::mutex mutex_for_mean_scale_;
  float total_batch_num_ = 0;
154
  std::unordered_map<const Scope*, int> scope_to_thread_id_;
T
Thunderbrook 已提交
155

156 157
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  std::vector<gpuStream_t> copy_streams_;
T
Thunderbrook 已提交
158
#endif
T
Thunderbrook 已提交
159 160
  std::vector<paddle::platform::Place> places_;
  std::vector<Scope*> thread_scopes_;
161 162 163 164 165
};

// should incorporate different type of device
class DeviceWorker {
 public:
166 167 168 169
  DeviceWorker() {
    no_cvm_ = true;
    use_cvm_ = false;
  }
170 171
  virtual ~DeviceWorker() {}
  virtual void Initialize(const TrainerDesc& desc) = 0;
H
hutuxian 已提交
172
  virtual void InitRandomDumpConfig(const TrainerDesc& desc);
173 174
  virtual void SetDeviceIndex(int tid) = 0;
  virtual void TrainFiles() = 0;
D
dongdaxiang 已提交
175
  virtual void PrintFetchVars() = 0;
176 177 178 179 180
  virtual void TrainFilesWithProfiler() = 0;
  virtual void CreateDeviceResource(const ProgramDesc& main_prog) = 0;
  // will make this zero copy in the future
  virtual void BindingDataFeedMemory() = 0;
  virtual void SetRootScope(Scope* root_scope);
J
jiaqi 已提交
181
  virtual void SetDataFeed(DataFeed* data_feed);
T
Thunderbrook 已提交
182 183
  virtual void SetWorkerNum(int num) {}
  virtual void CacheProgram(const ProgramDesc& main_program) {}
T
Thunderbrook 已提交
184
  virtual void ProduceTasks() {}
T
Thunderbrook 已提交
185
  virtual void GetXpuOpIndex() {}
T
Thunderbrook 已提交
186
  virtual void Schedule(int taskid) {}
187 188 189
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  virtual void SetStream(const gpuStream_t stream) {}
  virtual void SetEvent(const gpuEvent_t event) {}
T
Thunderbrook 已提交
190
#endif
H
hutuxian 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
  virtual void SetNeedDumpField(bool need_dump_field) {
    need_dump_field_ = need_dump_field;
  }
  virtual void SetNeedDumpParam(bool need_dump_param) {
    need_dump_param_ = need_dump_param;
  }
  virtual void SetDumpFieldVector(const std::vector<std::string>& dump_fields) {
    dump_fields_ = &dump_fields;
  }
  virtual void SetDumpParamVector(const std::vector<std::string>& dump_param) {
    dump_param_ = &dump_param;
  }
  virtual void SetChannelWriter(ChannelObject<std::string>* queue) {
    writer_.Reset(queue);
  }
206 207 208
  virtual void SetPlace(const paddle::platform::Place& place) {
    place_ = place;
  }
209 210 211
  virtual void SetReaderPlace(const paddle::platform::Place& place) {
    device_reader_->SetPlace(place);
  }
212 213 214
  virtual void SetDeviceContext(platform::DeviceContext* dev_ctx) {
    dev_ctx_ = dev_ctx;
  }
215 216 217

  virtual void SetThreadNum(int thread_num) { thread_num_ = thread_num; }

218
  virtual Scope* GetThreadScope() { return thread_scope_; }
T
Thunderbrook 已提交
219
  DataFeed* device_reader_ = nullptr;
220 221

 protected:
H
hutuxian 已提交
222
  virtual void DumpParam(const Scope& scope, const int batch_id);
223 224
  virtual void DumpField(const Scope& scope,
                         int dump_mode,
H
hutuxian 已提交
225
                         int dump_interval = 10000);
J
jiaqi 已提交
226
  Scope* root_scope_ = nullptr;
227
  Scope* thread_scope_;
228
  paddle::platform::Place place_;
T
tangwei12 已提交
229
  int64_t batch_num_ = 0;
D
dongdaxiang 已提交
230
  FetchConfig fetch_config_;
231
  bool use_cvm_;
232
  bool no_cvm_;
233
  bool scale_sparse_gradient_with_batch_size_;
T
Thunderbrook 已提交
234
  TrainerDesc trainer_desc_;
H
hutuxian 已提交
235 236 237 238 239 240

  // dump params or grads for debug
  bool need_dump_param_;
  bool need_dump_field_;
  const std::vector<std::string>* dump_param_;
  const std::vector<std::string>* dump_fields_;
241
  std::vector<std::string> all_param_;
H
hutuxian 已提交
242 243 244 245

  int dump_mode_ = 0;
  int dump_interval_ = 10000;
  ChannelWriter<std::string> writer_;
D
danleifeng 已提交
246
  const size_t tensor_iterator_thread_num = 16;
247
  platform::DeviceContext* dev_ctx_ = nullptr;
L
lxsbupt 已提交
248
  int thread_num_;
249 250 251 252 253 254 255 256 257
};

class CPUWorkerBase : public DeviceWorker {
 public:
  CPUWorkerBase() {}
  virtual ~CPUWorkerBase() {}
  virtual void SetDeviceIndex(int tid) { thread_id_ = tid; }
  virtual void TrainFiles() = 0;
  virtual void TrainFilesWithProfiler() {}
D
dongdaxiang 已提交
258
  virtual void PrintFetchVars() {}
259 260 261 262 263 264 265 266 267
  virtual void CreateDeviceResource(const ProgramDesc& main_prog) {}

 protected:
  int thread_id_;
};

class HogwildWorker : public CPUWorkerBase {
 public:
  HogwildWorker() {}
268 269 270 271 272 273
  virtual ~HogwildWorker() {
    for (OperatorBase* op : ops_) {
      delete op;
    }
    std::vector<OperatorBase*>().swap(ops_);
  }
D
dongdaxiang 已提交
274
  virtual void Initialize(const TrainerDesc& desc);
275 276
  virtual void TrainFiles();
  virtual void TrainFilesWithProfiler();
D
dongdaxiang 已提交
277
  virtual void PrintFetchVars();
278 279
  virtual void CreateDeviceResource(const ProgramDesc& main_prog);
  virtual void BindingDataFeedMemory();
280
  template <typename T>
281 282 283
  void SetZero(phi::DenseTensor* tensor,
               phi::DenseTensor* root_tensor,
               int tensor_dim);
284 285 286 287

 protected:
  void CreateThreadOperators(const ProgramDesc& program);
  void CreateThreadScope(const ProgramDesc& program);
288 289
  // check batch num
  bool CheckBatchNum(int flag);
290

291 292
  std::vector<std::string> op_names_;
  std::vector<OperatorBase*> ops_;
293
  bool thread_barrier_;
294
  // Scope* thread_scope_;
295 296
  HogwildWorkerParameter param_;
  std::vector<std::string> skip_ops_;
297
  std::map<std::string, int> stat_var_name_map_;
298
  static std::atomic<bool> quit_flag_;
299
  phi::DenseTensor sync_stat_;
300 301 302 303 304 305
};

class DownpourWorker : public HogwildWorker {
 public:
  DownpourWorker() {}
  virtual ~DownpourWorker() {}
306
  virtual void Initialize(const TrainerDesc& desc);
307
  virtual void TrainFiles();
308
  virtual void TrainFilesWithProfiler();
309 310 311 312 313 314 315

 protected:
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  void FillSparseValue(size_t table_id);
  void PushGradients();
  void CollectLabelInfo(size_t table_id);
316
  void AdjustInsWeight();
X
xujiaqi01 已提交
317 318 319
  void CopySparseTable();
  void CopyDenseTable();
  void CopyDenseVars();
320

321
  DownpourWorkerParameter param_;
322 323 324 325
  // copy table
  CopyTableConfig copy_table_config_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_sparse_tables_;
  std::unordered_map<uint64_t, std::unordered_set<uint64_t>> feasign_set_;
326 327
  // actually pushed feasign of each table
  std::map<uint64_t, std::vector<uint64_t>> sparse_push_keys_;
328
  std::map<uint64_t, std::vector<std::string>> sparse_key_names_;
329 330 331 332
  // feasign
  std::map<uint64_t, std::vector<uint64_t>> features_;
  // feasign embedding
  std::map<uint64_t, std::vector<std::vector<float>>> feature_values_;
333 334 335 336 337 338 339 340 341
  std::map<uint64_t, std::vector<std::string>> sparse_value_names_;
  // adjust ins weight
  AdjustInsWeightConfig adjust_ins_weight_config_;
  // check nan and inf during training
  std::vector<std::string> check_nan_var_names_;
  bool need_to_push_sparse_;
  // feasign stats
  std::map<uint64_t, std::vector<float>> feature_labels_;
  std::map<uint64_t, std::vector<std::string>> sparse_grad_names_;
342 343
  // feasign embedding gradient
  std::map<uint64_t, std::vector<std::vector<float>>> feature_grads_;
344 345 346 347 348 349
  std::vector<::std::future<int32_t>> push_sparse_status_;
  bool dump_slot_;
  bool need_to_push_dense_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  float scale_datanorm_;
  std::vector<::std::future<int32_t>> push_dense_status_;
350 351
  // skipped ops
  std::vector<std::string> skip_ops_;
352 353 354 355 356
  // just save the value in param_ for easy access
  std::map<uint64_t, std::string> label_var_name_;
  std::map<uint64_t, std::vector<std::string>> dense_value_names_;
  std::map<uint64_t, uint64_t> table_dependency_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_dense_tables_;
Z
zhang wenhui 已提交
357 358 359 360
  // multitask
  std::map<int32_t, uint64_t> cond2table_map_;
  std::set<uint64_t> condvalue_set_;
  bool flag_partial_push_;
361 362 363 364 365 366

 private:
  // std::vector<std::string> dump_param_;
  // just save the value in param_ for easy access
  // std::map<uint64_t, std::string> label_var_name_;
  // std::map<uint64_t, std::vector<std::string>> dense_value_names_;
367 368

  std::shared_ptr<PullDenseWorker> _pull_dense_worker;
369 370

  std::vector<float> nid_show_;
371 372 373 374
  // std::map<uint64_t, uint64_t> table_dependency_;
  // std::vector<std::pair<uint64_t, uint64_t>> copy_dense_tables_;
};

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
// Based on DownpourWorker,remove push pull code into operator
#if defined(PADDLE_WITH_PSCORE)
class DownpourLiteWorker : public HogwildWorker {
 public:
  DownpourLiteWorker() {}
  virtual ~DownpourLiteWorker() {}
  virtual void Initialize(const TrainerDesc& desc);
  virtual void TrainFiles();
  virtual void TrainFilesWithProfiler();

 protected:
  std::shared_ptr<paddle::distributed::FleetWrapper> fleet_ptr_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  void PushGradients();
  void CopySparseTable();
  void CopyDenseTable();
  void CopyDenseVars();

  DownpourWorkerParameter param_;
  // copy table
  CopyTableConfig copy_table_config_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_sparse_tables_;
  std::unordered_map<uint64_t, std::unordered_set<uint64_t>> feasign_set_;
  // actually pushed feasign of each table
  std::map<uint64_t, std::vector<uint64_t>> sparse_push_keys_;
  std::map<uint64_t, std::vector<std::string>> sparse_key_names_;
  // feasign
  std::map<uint64_t, std::vector<uint64_t>> features_;
  // feasign embedding
  std::map<uint64_t, std::vector<std::vector<float>>> feature_values_;
  std::map<uint64_t, std::vector<std::string>> sparse_value_names_;
  // adjust ins weight
  AdjustInsWeightConfig adjust_ins_weight_config_;
  // check nan and inf during training
  std::vector<std::string> check_nan_var_names_;
  bool need_to_push_sparse_;
  // feasign stats
  std::map<uint64_t, std::vector<float>> feature_labels_;
  std::map<uint64_t, std::vector<std::string>> sparse_grad_names_;
  // feasign embedding gradient
  std::map<uint64_t, std::vector<std::vector<float>>> feature_grads_;
  std::vector<::std::future<int32_t>> push_sparse_status_;
  bool dump_slot_;
  bool need_to_push_dense_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  float scale_datanorm_;
  std::vector<::std::future<int32_t>> push_dense_status_;
  // skipped ops
  std::vector<std::string> skip_ops_;
  // just save the value in param_ for easy access
  std::map<uint64_t, std::string> label_var_name_;
  std::map<uint64_t, std::vector<std::string>> dense_value_names_;
  std::map<uint64_t, uint64_t> table_dependency_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_dense_tables_;
  // multitask
  std::map<int32_t, uint64_t> cond2table_map_;
  std::set<uint64_t> condvalue_set_;
  bool flag_partial_push_;

 private:
  // std::vector<std::string> dump_param_;
  // just save the value in param_ for easy access
  // std::map<uint64_t, std::string> label_var_name_;
  // std::map<uint64_t, std::vector<std::string>> dense_value_names_;

  std::shared_ptr<PullDenseWorker> _pull_dense_worker;

  std::vector<float> nid_show_;
  // std::map<uint64_t, uint64_t> table_dependency_;
  // std::vector<std::pair<uint64_t, uint64_t>> copy_dense_tables_;
};
#endif

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
class DownpourWorkerOpt : public DownpourWorker {
 public:
  DownpourWorkerOpt() {}
  virtual ~DownpourWorkerOpt() {}
  virtual void CreateDeviceResource(const ProgramDesc& main_prog);
  virtual void Initialize(const TrainerDesc& desc);
  virtual void TrainFiles();

 protected:
  void CreateThreadOperatorsWithRerank(const ProgramDesc& program);
  std::vector<std::vector<OperatorBase*>> loss_ops_;
  std::vector<std::vector<std::string>> loss_op_names_;
  std::vector<std::string> loss_names_;
  std::string async_wait_name_;
  int async_index_ = -1;
  uint64_t async_tid_ = 0;
464 465
};

T
Thunderbrook 已提交
466
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
class HeterCpuWorker : public HogwildWorker {
 public:
  HeterCpuWorker() {}
  virtual ~HeterCpuWorker() {}
  virtual void Initialize(const TrainerDesc& desc);
  virtual void TrainFiles();
  virtual void TrainFilesWithProfiler();
  virtual void SetNeedDump(bool need_dump_field);
  virtual void SetChannelWriter(ChannelObject<std::string>* queue);
  virtual void SetWorkerNum(int num) { worker_num_ = num; }
  virtual void Schedule(int taskid);
  virtual void JumpContext(std::shared_ptr<HeterTask> task);
  virtual void CacheProgram(const ProgramDesc& main_program) {
    new (&program_) ProgramDesc(main_program);
  }
  virtual void GetXpuOpIndex();

 protected:
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  std::shared_ptr<paddle::framework::HeterWrapper> heter_ptr_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  void FillSparseValue(std::shared_ptr<HeterTask> task, size_t table_id);
  void PushGradients();
  void CollectLabelInfo(std::shared_ptr<HeterTask> task, size_t table_id);
  void AdjustInsWeight(std::shared_ptr<HeterTask> task);
  void DumpParam();
  void CopySparseTable();
  void CopyDenseTable();
  void CopyDenseVars();

 private:
  int mpi_rank_;
  int worker_num_;
  int xpu_begin_op_index_;
  int xpu_end_op_index_;
  ProgramDesc program_;
  HeterObjectPool<HeterTask> object_pool_;
  HeterList<int, std::shared_ptr<HeterTask>> run_queue_;
  HeterList<int, std::shared_ptr<HeterTask>> wait_queue_;
  bool need_dump_param_;
  std::vector<std::string> dump_param_;
  bool need_to_push_dense_;
  bool need_dump_field_;
  bool dump_slot_;
  bool need_to_push_sparse_;
  std::vector<std::string> dump_fields_;
  ChannelWriter<std::string> writer_;
  DownpourWorkerParameter param_;
  float scale_datanorm_;
  // just save the value in param_ for easy access
  std::map<uint64_t, std::string> label_var_name_;
  std::map<uint64_t, std::vector<std::string>> sparse_key_names_;
  std::map<uint64_t, std::vector<std::string>> sparse_value_names_;
  std::map<uint64_t, std::vector<std::string>> sparse_grad_names_;
  std::map<uint64_t, std::vector<std::string>> dense_value_names_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  platform::Place root_place_;
  // actually pushed feasign of each table
  std::map<uint64_t, std::vector<uint64_t>> sparse_push_keys_;

  // skipped ops
  std::vector<std::string> skip_ops_;

  std::vector<::std::future<int32_t>> push_sparse_status_;
  std::vector<::std::future<int32_t>> push_dense_status_;

  // adjust ins weight
  AdjustInsWeightConfig adjust_ins_weight_config_;
  std::vector<float> nid_show_;
  // check nan and inf during training
  std::vector<std::string> check_nan_var_names_;
  // copy table
  CopyTableConfig copy_table_config_;
  std::map<uint64_t, uint64_t> table_dependency_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_sparse_tables_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_dense_tables_;
  std::unordered_map<uint64_t, std::unordered_set<uint64_t>> feasign_set_;
};
#endif

F
Fan Zhang 已提交
547 548
#if (defined PADDLE_WITH_NCCL || defined PADDLE_WITH_RCCL || \
     defined PADDLE_WITH_XPU_BKCL) &&                        \
549
    (defined PADDLE_WITH_PSLIB)
T
Thunderbrook 已提交
550 551 552 553 554 555
class PSGPUWorker : public HogwildWorker {
 public:
  PSGPUWorker() {}
  virtual ~PSGPUWorker() {}
  virtual void Initialize(const TrainerDesc& desc);
  virtual void TrainFiles();
556
  virtual void TrainFilesWithProfiler();
T
Thunderbrook 已提交
557 558 559 560 561
  virtual void SetChannelWriter(ChannelObject<std::string>* queue);
  virtual void SetWorkerNum(int num) { worker_num_ = num; }
  virtual void CacheProgram(const ProgramDesc& main_program) {
    new (&program_) ProgramDesc(main_program);
  }
562
  void ProduceTasks() override;
F
Fan Zhang 已提交
563
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
564 565
  virtual void SetStream(const gpuStream_t stream) { copy_stream_ = stream; }
  virtual void SetEvent(const gpuEvent_t event) { event_ = event; }
F
Fan Zhang 已提交
566
#endif
T
Thunderbrook 已提交
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
  void ResetStat();

 protected:
  void PushGradients();
  void CopySparseTable();
  void CopyDenseTable();
  void CopyDenseVars();

 private:
  int mpi_rank_;
  std::mutex mutex_;
  int worker_num_;
  ProgramDesc program_;
  HeterObjectPool<HeterTask> object_pool_;
  bool need_to_push_dense_;
  bool dump_slot_;
  bool need_to_push_sparse_;
  DownpourWorkerParameter param_;
  float scale_datanorm_;
  // just save the value in param_ for easy access
  std::map<uint64_t, std::string> label_var_name_;
  std::map<uint64_t, std::vector<std::string>> sparse_key_names_;
T
Thunderbrook 已提交
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
  std::map<uint64_t, std::vector<std::string>> sparse_value_names_;
  std::map<uint64_t, std::vector<std::string>> sparse_grad_names_;
  std::map<uint64_t, std::vector<std::string>> dense_value_names_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  platform::Place root_place_;
  // actually pushed feasign of each table
  std::map<uint64_t, std::vector<uint64_t>> sparse_push_keys_;

  // skipped ops
  std::vector<std::string> skip_ops_;

  std::vector<::std::future<int32_t>> push_sparse_status_;
  std::vector<::std::future<int32_t>> push_dense_status_;

  // adjust ins weight
  AdjustInsWeightConfig adjust_ins_weight_config_;
  std::vector<float> nid_show_;
  // check nan and inf during training
  std::vector<std::string> check_nan_var_names_;
  // copy table
  CopyTableConfig copy_table_config_;
  std::map<uint64_t, uint64_t> table_dependency_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_sparse_tables_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_dense_tables_;
  std::unordered_map<uint64_t, std::unordered_set<uint64_t>> feasign_set_;
  paddle::framework::Channel<std::shared_ptr<HeterTask>> pull_queue_;
  paddle::framework::Channel<std::shared_ptr<HeterTask>> push_queue_;
F
Fan Zhang 已提交
616
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
617 618
  gpuEvent_t event_;
  gpuStream_t copy_stream_;
F
Fan Zhang 已提交
619
#endif
T
Thunderbrook 已提交
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
  int batch_cnt_{0};
  std::atomic<int> done_cnt_{0};

  double total_time_;
  double read_time_;
  double pack_time_;
  double pull_sparse_local_time_;
  double op_all_time_;
  double xpu_op_time_;
  double xpu_wait_time_;
  double cpu_op_time_;
  double collect_label_time_;
  double fill_sparse_time_;
  double push_sparse_time_;
  double gpu_2_cpu_time_;
  double cpu_2_gpu_time_;
  uint64_t total_inst_;
};
#endif

640
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
641
    defined(PADDLE_WITH_ASCEND_CL)
H
hutuxian 已提交
642 643
class SectionWorker : public DeviceWorker {
 public:
644
  SectionWorker() {}
H
hutuxian 已提交
645 646 647
  ~SectionWorker() override {}

  void Initialize(const TrainerDesc& desc) override;
648
  void PrepareUnusedVar();
H
hutuxian 已提交
649 650 651 652 653

  void BindingDataFeedMemory() override {}
  void CreateDeviceResource(const ProgramDesc& main_prog) override{};

  void TrainFiles() override;
654
  void TrainFilesWithProfiler() override{};
H
hutuxian 已提交
655 656 657 658 659

  void PrintFetchVars() override {}

  const platform::Place& place() const { return place_; }

L
lilong12 已提交
660
  void SetDeviceIndex(int tid) override {}
H
hutuxian 已提交
661
  void SetThreadIndex(int thread_id) { thread_id_ = thread_id; }
L
lilong12 已提交
662
  void SetMicrobatchNum(int num) { num_microbatches_ = num; }
663 664 665
  void SetPipelineStageNum(int num) { num_pipeline_stages_ = num; }
  void SetPipelineStage(int stage) { pipeline_stage_ = stage; }
  void SetScheduleMode(int mode) { schedule_mode_ = mode; }
L
lilong12 已提交
666 667
  void SetMicrobatchScopes(const std::vector<Scope*>& scope) {
    microbatch_scopes_ = scope;
H
hutuxian 已提交
668
  }
L
lilong12 已提交
669 670 671
  void SetMinibatchScope(const Scope* scope) { minibatch_scope_ = scope; }
  void SetSkipVars(const std::vector<std::string>& skip_vars) {
    skip_vars_ = skip_vars;
H
hutuxian 已提交
672
  }
673
  void RunBackward(
674 675
      int micro_id,
      std::unique_ptr<GarbageCollector>&,
676 677
      std::unordered_map<const OperatorBase*, std::vector<std::string>>&);
  void RunForward(
678 679
      int micro_id,
      std::unique_ptr<GarbageCollector>&,
680 681 682 683
      std::unordered_map<const OperatorBase*, std::vector<std::string>>&);
  void RunUpdate(
      std::unique_ptr<GarbageCollector>&,
      std::unordered_map<const OperatorBase*, std::vector<std::string>>&);
684 685
  void RunFThenB(std::unique_ptr<GarbageCollector>&);
  void Run1F1B(std::unique_ptr<GarbageCollector>&);
H
hutuxian 已提交
686 687 688 689

 protected:
  int section_id_;
  int thread_id_;
L
lilong12 已提交
690
  int num_microbatches_;
691 692 693
  int num_pipeline_stages_;
  int pipeline_stage_;
  int schedule_mode_;  // 0 for F-then-B and 1 for 1F1B
L
lilong12 已提交
694 695
  std::vector<Scope*> microbatch_scopes_;
  const Scope* minibatch_scope_;
H
hutuxian 已提交
696

697 698 699 700
  // skip&backward vars are only used in 1F1B
  std::vector<std::string> skip_vars_;
  std::vector<std::string> backward_send_vars_;

H
hutuxian 已提交
701
  std::vector<std::unique_ptr<OperatorBase>> ops_;
702 703 704 705
  std::vector<OperatorBase*> forward_and_lr_ops_;
  std::vector<OperatorBase*> forward_ops_;
  std::vector<OperatorBase*> backward_ops_;
  std::vector<OperatorBase*> optimizer_ops_;
L
lilong12 已提交
706
  std::shared_ptr<framework::ProgramDesc> program_;
707 708
  std::unordered_map<const OperatorBase*, std::vector<std::string>>
      unused_vars_;
L
lilong12 已提交
709
  static uint64_t batch_id_;
H
hutuxian 已提交
710 711 712 713

  platform::DeviceContext* dev_ctx_ = nullptr;
};
#endif
L
lilong12 已提交
714

715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
#if defined(PADDLE_WITH_PSCORE)
class HeterSectionWorker : public DeviceWorker {
 public:
  HeterSectionWorker() {}
  ~HeterSectionWorker() override {}

  void Initialize(const TrainerDesc& desc) override;
  void CreateDeviceResource(const ProgramDesc& main_prog) override{};

  void TrainFiles() override;
  void TrainFilesWithProfiler() override;

  void BindingDataFeedMemory() override {}
  void BindingDataFeedMemory(int micro_id);
  void PrintFetchVars() override;
  const platform::Place& place() const { return place_; }

  void SetDeviceIndex(int tid) override { thread_id_ = tid; }
733
  // void SetThreadNum(int thread_num) { thread_num_ = thread_num; }
734 735 736 737 738 739
  void SetMicrobatchNum(int num) { num_microbatches_ = num; }
  void SetPipelineStageNum(int num) { num_pipeline_stages_ = num; }
  void SetPipelineStage(int stage) { pipeline_stage_ = stage; }
  std::shared_ptr<std::vector<Scope*>> GetMicrobatchScopes() {
    return microbatch_scopes_;
  }
740 741 742 743
  void SetMicrobatchScopes(
      std::shared_ptr<std::vector<Scope*>> microbatch_scopes) {
    microbatch_scopes_ = microbatch_scopes;
  }
744 745 746 747
  using SHARED_THREAD_QUEUE = std::shared_ptr<
      ::paddle::framework::BlockingQueue<std::pair<std::string, int>>>;

  SHARED_THREAD_QUEUE GetThreadQueue() { return thread_queue_; }
748 749 750
  void SetThreadQueue(SHARED_THREAD_QUEUE thread_queue) {
    thread_queue_ = thread_queue;
  }
751 752
  void CopyParameters(int microbatch_id,
                      const ProgramDesc& program,
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
                      const platform::Place& place);
  void SetMinibatchScope(Scope* scope) { minibatch_scope_ = scope; }
  void SetTrainerId(int trainer_id) { this->trainer_id_ = trainer_id; }
  void SetTrainers(int trainers) { this->trainers_ = trainers; }
  void CreateMicrobatchScopes();
  void RunForward(int micro_id);
  void RunBackward(int micro_id);
  void RunListen();
  void MiniBatchBarrier();
  void Run();
  void BatchPostProcess();
  void SetDebug(bool debug) { debug_ = debug; }
  Scope* GetThreadScope() override { return minibatch_scope_; }

  // multi-stream
  // #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  //  void SetStream(const gpuStream_t stream) override {}
  //  void SetEvent(const gpuEvent_t event) override {}
  // #endif

 protected:
  int trainer_id_;
  int trainers_;
776
  // int thread_num_;
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
  int thread_id_;
  int num_microbatches_;
  int num_pipeline_stages_;
  int pipeline_stage_;
  bool epoch_finish_;

  std::shared_ptr<std::vector<Scope*>> microbatch_scopes_;
  Scope* minibatch_scope_;
  std::vector<int> micro_ids_{};
  std::unique_ptr<OperatorBase> listen_op_{nullptr};
  std::vector<std::unique_ptr<OperatorBase>> forward_ops_;
  std::vector<std::unique_ptr<OperatorBase>> backward_ops_;
  std::shared_ptr<framework::ProgramDesc> program_;
  std::shared_ptr<
      ::paddle::framework::BlockingQueue<std::pair<std::string, int>>>
      thread_queue_;
  static uint64_t batch_id_;
  uint64_t total_ins_num_ = 0;
  platform::DeviceContext* dev_ctx_ = nullptr;
  bool debug_ = false;
  std::vector<double> op_total_time_;
  std::vector<std::string> op_name_;
  platform::Timer timeline_;
  double total_time_ = 0.0;
  double read_time_ = 0.0;
};
#endif

805 806
}  // namespace framework
}  // namespace paddle