test_cholesky_op.py 5.3 KB
Newer Older
G
Guo Sheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
from op_test import OpTest, skip_check_grad_ci
from gradient_checker import grad_check
from decorator_helper import prog_scope


@skip_check_grad_ci(
    reason="The input of cholesky_op should always be symmetric positive-definite. "
    "However, OpTest calculates the numeric gradient of each element in input "
    "via small finite difference, which makes the input no longer symmetric "
    "positive-definite thus can not compute the Cholesky decomposition. "
    "While we can use the gradient_checker.grad_check to perform gradient "
    "check of cholesky_op, since it supports check gradient with a program "
    "and we can construct symmetric positive-definite matrices in the program")
class TestCholeskyOp(OpTest):
    def setUp(self):
        self.op_type = "cholesky"
        self._input_shape = (2, 32, 32)
        self._upper = True
        self.init_config()
        self.trans_dims = list(range(len(self._input_shape) - 2)) + [
            len(self._input_shape) - 1, len(self._input_shape) - 2
        ]
        self.root_data = np.random.random(self._input_shape).astype("float64")
        # construct symmetric positive-definite matrice
        input_data = np.matmul(
            self.root_data, self.root_data.transpose(self.trans_dims)) + 1e-05
        output_data = np.linalg.cholesky(input_data).astype("float64")
        if self._upper:
            output_data = output_data.transpose(self.trans_dims)
        self.inputs = {"X": input_data}
        self.attrs = {"upper": self._upper}
        self.outputs = {"Out": output_data}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)

    @prog_scope()
    def func(self, place):
        # use small size since Jacobian gradients is time consuming
        root_data = self.root_data[..., :3, :3]
        prog = fluid.Program()
        with fluid.program_guard(prog):
            root = layers.create_parameter(
                dtype=root_data.dtype, shape=root_data.shape)
            root_t = layers.transpose(root, self.trans_dims)
            x = layers.matmul(x=root, y=root_t) + 1e-05
            out = paddle.cholesky(x, upper=self.attrs["upper"])
            grad_check(root, out, x_init=root_data, place=place)

    def init_config(self):
        self._upper = True


class TestCholeskyOpLower(TestCholeskyOp):
    def init_config(self):
        self._upper = False


class TestCholeskyOp2D(TestCholeskyOp):
    def init_config(self):
        self._input_shape = (64, 64)


93 94 95 96 97 98
class TestDygraph(unittest.TestCase):
    def test_dygraph(self):
        paddle.disable_static()
        a = np.random.rand(3, 3)
        a_t = np.transpose(a, [1, 0])
        x_data = np.matmul(a, a_t) + 1e-03
Z
Zhou Wei 已提交
99
        x = paddle.to_tensor(x_data)
100 101 102
        out = paddle.cholesky(x, upper=False)


103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
class TestCholeskySingularAPI(unittest.TestCase):
    def setUp(self):
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_result(self, place, with_out=False):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(name="input", shape=[4, 4], dtype="float64")
            result = paddle.cholesky(input)

            input_np = np.zeros([4, 4]).astype("float64")

            exe = fluid.Executor(place)
            try:
                fetches = exe.run(fluid.default_main_program(),
                                  feed={"input": input_np},
                                  fetch_list=[result])
            except fluid.core.EnforceNotMet as ex:
                print("The mat is singular")
                pass

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                input_np = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                                     [[10, 11, 12], [13, 14, 15],
                                      [16, 17, 18]]]).astype("float64")
                input = fluid.dygraph.to_variable(input_np)
                try:
                    result = paddle.cholesky(input)
                except fluid.core.EnforceNotMet as ex:
                    print("The mat is singular")
                    pass


G
Guo Sheng 已提交
143 144
if __name__ == "__main__":
    unittest.main()