pd_dialect.cc 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/dialect/pd_dialect.h"
16
#include "paddle/fluid/dialect/pd_attribute.h"
17 18 19
// NOTE(zhangbo9674): File pd_op.h is generated by op_gen.py, see details in
// paddle/fluid/dialect/CMakeLists.txt.
#include "paddle/fluid/dialect/legacy_pd_op.h"
20
#include "paddle/fluid/dialect/pd_op.h"
21
#include "paddle/fluid/dialect/pd_type.h"
22
#include "paddle/fluid/dialect/pd_type_storage.h"
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
#include "paddle/fluid/dialect/utils.h"
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/ir/dialect_interface.h"
#include "paddle/phi/core/dense_tensor.h"

namespace paddle {
namespace dialect {
std::shared_ptr<paddle::framework::Variable>
ParameterConvertInterface::ParameterToVariable(ir::Parameter* parameter) {
  if (parameter->type().isa<DenseTensorType>()) {
    VLOG(4) << "Convert a DenseTensor Parameter to a variable.";
    std::shared_ptr<paddle::framework::Variable> var =
        std::make_shared<paddle::framework::Variable>();
    phi::DenseTensor* tensor = var->GetMutable<phi::DenseTensor>();
    // Init DenseTensor
    auto dim = parameter->type().dyn_cast<DenseTensorType>().dim();
    phi::DenseTensorMeta meta(
        TransToPhiDataType(
            parameter->type().dyn_cast<DenseTensorType>().dtype()),
        phi::DDim(dim.data(), dim.size()),
        TransToPhiDataLayout(
            parameter->type().dyn_cast<DenseTensorType>().data_layout()),
        parameter->type().dyn_cast<DenseTensorType>().lod(),
        parameter->type().dyn_cast<DenseTensorType>().offset());
    tensor->set_meta(meta);
    paddle::platform::DeviceContext* dev_ctx =
        paddle::platform::DeviceContextPool::Instance().Get(
            paddle::platform::CPUPlace());
    dev_ctx->Alloc(tensor,
                   TransToPhiDataType(
                       parameter->type().dyn_cast<DenseTensorType>().dtype()));
    memcpy(tensor->data(),
           parameter->data(),
           tensor->numel() * phi::SizeOf(tensor->dtype()));
    return var;
  } else {
    return nullptr;
  }
}

std::unique_ptr<ir::Parameter> ParameterConvertInterface::VariableToParameter(
    paddle::framework::Variable* var) {
  if (var->IsType<phi::DenseTensor>()) {
    phi::DenseTensor* tensor = var->GetMutable<phi::DenseTensor>();
    // Get Meta
    ir::IrContext* ctx = ir::IrContext::Instance();
    ir::Type data_type = TransToIrDataType(tensor->dtype(), ctx);
    DenseTensorTypeStorage::Dim dims(tensor->dims().size());
    std::copy(tensor->dims().Get(),
              tensor->dims().Get() + tensor->dims().size(),
              dims.data());
    DenseTensorTypeStorage::DataLayout data_layout =
        TransToIrDataLayout(tensor->layout());
    DenseTensorTypeStorage::LoD lod = tensor->lod();
    size_t offset = tensor->meta().offset;
    void* data = tensor->data();
    ir::Type dense_tensor_type =
        DenseTensorType::get(ctx, data_type, dims, data_layout, lod, offset);
    return std::make_unique<ir::Parameter>(
        data,
        tensor->numel() * phi::SizeOf(tensor->dtype()),
        dense_tensor_type);
  } else {
    return nullptr;
  }
}

PaddleDialect::PaddleDialect(ir::IrContext* context)
    : ir::Dialect(name(), context, ir::TypeId::get<PaddleDialect>()) {
  initialize();
}

void PaddleDialect::initialize() {
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
  RegisterTypes<paddle::dialect::DenseTensorType>();

  RegisterAttributes<paddle::dialect::IntArrayAttribute,
                     paddle::dialect::ScalarAttribute,
                     paddle::dialect::DataTypeAttribute,
                     paddle::dialect::PlaceAttribute,
                     paddle::dialect::DataLayoutAttribute>();

  // NOTE(zhangbo9674): GET_OP_LIST is defined in pd_op.h which is
  // generated by op_gen.py, see details in
  // paddle/fluid/dialect/CMakeLists.txt.
  RegisterOps<
#define GET_OP_LIST
#include "paddle/fluid/dialect/pd_op.h"  // NOLINT
      >();

113
  RegisterInterfaces<ParameterConvertInterface>();
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
  RegisterOps<Conv2DOp,
              FeedOp,
              BatchNormOp,
              BatchNormOp_,
              ElementwiseAddOp,
              Pool2DOp,
              FlattenContiguousRangeOp,
              MatmulV2Op,
              Reshape2Op,
              SoftmaxWithCrossEntropyOp,
              ReduceMeanOp,
              TopKV2Op,
              FillConstantOp,
              ReduceMeanGradOp,
              SoftmaxWithCrossEntropyGradOp,
              ElementwiseAddGradOp,
              MatmulV2GradOp,
              FlattenContiguousRangeGradOp,
              Pool2DGradOp,
              BatchNormGradOp,
              Conv2DGradOp,
              SumOp,
              FetchV2Op>();
}

void PaddleDialect::PrintType(ir::Type type, std::ostream& os) {
  DenseTensorType tensor_type = type.dyn_cast<DenseTensorType>();

  os << "tensor<";
  auto& dims = tensor_type.dim();
  for (auto d : dims) {
    os << d;
    os << "x";
  }
  tensor_type.dtype().print(os);
  os << ">";
150 151 152 153
}

}  // namespace dialect
}  // namespace paddle