selected_rows_functor.cc 25.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/math/selected_rows_functor.h"
16

L
lidanqing 已提交
17 18 19 20
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/operators/mkldnn/axpy_handler.h"
#endif

21 22 23 24
namespace paddle {
namespace operators {
namespace math {
template <typename T>
Q
QI JUN 已提交
25 26
struct SelectedRowsAdd<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
27 28 29 30
                  const framework::SelectedRows& input1,
                  const framework::SelectedRows& input2,
                  framework::SelectedRows* output) {
    auto in1_height = input1.height();
31 32 33 34 35 36
    PADDLE_ENFORCE_EQ(
        in1_height, input2.height(),
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height  = "
                                          "[%d], second input height = [%d]",
                                          in1_height, input2.height()));
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    output->set_height(in1_height);

    auto& in1_rows = input1.rows();
    auto& in2_rows = input2.rows();
    std::vector<int64_t> out_rows;
    out_rows.reserve(in1_rows.size() + in2_rows.size());

    // concat rows
    out_rows.insert(out_rows.end(), in1_rows.begin(), in1_rows.end());
    out_rows.insert(out_rows.end(), in2_rows.begin(), in2_rows.end());
    output->set_rows(out_rows);

    auto* out_value = output->mutable_value();
    auto& in1_value = input1.value();
    auto& in2_value = input2.value();

    auto in1_row_numel = in1_value.numel() / in1_rows.size();
54 55 56 57 58 59 60 61 62 63 64 65
    PADDLE_ENFORCE_EQ(
        in1_row_numel, in2_value.numel() / in2_rows.size(),
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, in2_value.numel() / in2_rows.size()));
    PADDLE_ENFORCE_EQ(
        in1_row_numel, out_value->numel() / out_rows.size(),
        platform::errors::InvalidArgument(
            "The input and oupput width must be equal."
            "But recieved input width = [%d], output width = [%d]",
            in1_row_numel, out_value->numel() / out_rows.size()));
66 67

    auto in1_place = input1.place();
68 69 70
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in1_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
71
    auto in2_place = input2.place();
72 73 74
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in2_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
75
    auto out_place = context.GetPlace();
76 77 78
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(out_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
79 80 81

    auto* out_data = out_value->data<T>();
    auto* in1_data = in1_value.data<T>();
82 83
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, out_place), out_data,
                 BOOST_GET_CONST(platform::CPUPlace, in1_place), in1_data,
84 85 86
                 in1_value.numel() * sizeof(T));

    auto* in2_data = in2_value.data<T>();
87
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, out_place),
88
                 out_data + in1_value.numel(),
89
                 BOOST_GET_CONST(platform::CPUPlace, in2_place), in2_data,
90 91 92 93
                 in2_value.numel() * sizeof(T));
  }
};

Q
QI JUN 已提交
94 95
template struct SelectedRowsAdd<platform::CPUDeviceContext, float>;
template struct SelectedRowsAdd<platform::CPUDeviceContext, double>;
96 97

template <typename T>
Q
QI JUN 已提交
98 99
struct SelectedRowsAddTensor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
100 101 102 103 104
                  const framework::SelectedRows& input1,
                  const framework::Tensor& input2, framework::Tensor* output) {
    auto in1_height = input1.height();
    auto in2_dims = input2.dims();
    auto out_dims = output->dims();
105 106 107 108 109 110 111 112 113 114 115 116
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
    PADDLE_ENFORCE_EQ(
        in1_height, out_dims[0],
        platform::errors::InvalidArgument(
            "The input and output height must be equal."
            "But recieved input height = [%d], output height = [%d]",
            in1_height, out_dims[0]));
117 118 119 120 121

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
122 123 124 125 126 127 128 129 130 131 132 133
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2.numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2.numel() / in1_height));
    PADDLE_ENFORCE_EQ(
        in1_row_numel, output->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The input and output width must be equal."
            "But recieved input width = [%d], output width = [%d]",
            in1_row_numel, output->numel() / in1_height));
134

Q
QI JUN 已提交
135
    SetConstant<platform::CPUDeviceContext, T> functor;
136 137 138 139 140 141 142 143 144 145 146 147 148 149
    functor(context, output, 0.0);

    auto* in1_data = in1_value.data<T>();
    auto* out_data = output->data<T>();

    for (size_t i = 0; i < in1_rows.size(); i++) {
      for (int64_t j = 0; j < in1_row_numel; j++) {
        out_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
      }
    }

    auto out_eigen = framework::EigenVector<T>::Flatten(*output);
    auto in2_eigen = framework::EigenVector<T>::Flatten(input2);
Q
QI JUN 已提交
150
    out_eigen.device(*context.eigen_device()) = out_eigen + in2_eigen;
151 152 153
  }
};

Q
QI JUN 已提交
154 155
template struct SelectedRowsAddTensor<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddTensor<platform::CPUDeviceContext, double>;
Q
QI JUN 已提交
156 157

template <typename T>
Q
QI JUN 已提交
158 159
struct SelectedRowsAddTo<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
Q
QI JUN 已提交
160 161 162 163
                  const framework::SelectedRows& input1,
                  const int64_t input2_offset,
                  framework::SelectedRows* input2) {
    auto in1_height = input1.height();
164 165 166 167 168 169
    PADDLE_ENFORCE_EQ(
        in1_height, input2->height(),
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, input2->height()));
Q
QI JUN 已提交
170 171 172 173 174 175 176 177

    auto& in1_rows = input1.rows();
    auto& in2_rows = *(input2->mutable_rows());

    auto& in1_value = input1.value();
    auto* in2_value = input2->mutable_value();

    // concat rows
Y
Yu Yang 已提交
178
    in2_rows.Extend(in1_rows.begin(), in1_rows.end());
Q
QI JUN 已提交
179 180

    auto in1_place = input1.place();
181 182 183
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in1_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
Q
QI JUN 已提交
184
    auto in2_place = input2->place();
185 186 187
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in2_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
Q
QI JUN 已提交
188 189 190

    auto* in1_data = in1_value.data<T>();
    auto* in2_data = in2_value->data<T>();
191
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, in2_place),
Q
QI JUN 已提交
192
                 in2_data + input2_offset,
193
                 BOOST_GET_CONST(platform::CPUPlace, in1_place), in1_data,
Q
QI JUN 已提交
194 195 196 197
                 in1_value.numel() * sizeof(T));
  }
};

Q
QI JUN 已提交
198 199 200 201
template struct SelectedRowsAddTo<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, double>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, int>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, int64_t>;
Q
QI JUN 已提交
202

M
minqiyang 已提交
203 204 205 206 207 208 209 210 211 212 213 214
template <typename T>
struct SelectedRowsSumTo<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
                  const std::vector<framework::SelectedRows*>& input1,
                  const std::vector<int64_t>& input2_offsets,
                  framework::SelectedRows* input2) {
    // Ensure all selected rows have the same height
    size_t size = 0u;
    for (auto iter = input1.begin(); iter != input1.end(); ++iter) {
      auto& in_rows = (*iter)->rows();
      size += in_rows.end() - in_rows.begin();
      auto in1_height = (*iter)->height();
215 216 217 218 219 220
      PADDLE_ENFORCE_EQ(in1_height, input2->height(),
                        platform::errors::InvalidArgument(
                            "The two inputs height must be equal."
                            "But recieved first input height = [%d], second "
                            "input height = [%d]",
                            in1_height, input2->height()));
M
minqiyang 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
    }
    // concat rows
    std::vector<int64_t> in2_rows;
    in2_rows.reserve(in2_rows.size() + size);
    for (auto iter = input1.begin(); iter != input1.end(); ++iter) {
      const framework::Vector<int64_t>& in_rows = (*iter)->rows();
      in2_rows.insert(in2_rows.end(), in_rows.begin(), in_rows.end());
    }
    input2->set_rows(in2_rows);

    auto* in2_value = input2->mutable_value();
    auto* in2_data = in2_value->data<T>();
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
    size_t offset = 0u;
    for (size_t i = 0u; i != input1.size(); ++i) {
      auto& in_value = input1[i]->value();
      const auto* in_data = in_value.data<T>();
      offset += input2_offsets[i];
      blas.VCOPY(in_value.numel(), in_data, in2_data + offset);
    }
  }
};

template struct SelectedRowsSumTo<platform::CPUDeviceContext, float>;
template struct SelectedRowsSumTo<platform::CPUDeviceContext, double>;

Q
QI JUN 已提交
247
template <typename T>
Q
QI JUN 已提交
248 249
struct SelectedRowsAddToTensor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
Q
QI JUN 已提交
250 251
                  const framework::SelectedRows& input1,
                  framework::Tensor* input2) {
Q
Qiao Longfei 已提交
252
    if (UNLIKELY(input1.rows().size() == 0)) {
253 254 255
      LOG(WARNING) << "input selected rows is empty!";
      return;
    }
Q
QI JUN 已提交
256 257
    auto in1_height = input1.height();
    auto in2_dims = input2->dims();
258 259 260 261 262 263
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
Q
QI JUN 已提交
264 265 266 267 268

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
269 270 271 272 273 274
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2->numel() / in1_height));
Q
QI JUN 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287

    auto* in1_data = in1_value.data<T>();
    auto* input2_data = input2->data<T>();

    for (size_t i = 0; i < in1_rows.size(); i++) {
      for (int64_t j = 0; j < in1_row_numel; j++) {
        input2_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
      }
    }
  }
};

Q
QI JUN 已提交
288 289 290 291
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, double>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, int>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, int64_t>;
292 293
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext,
                                        platform::bfloat16>;
294

T
typhoonzero 已提交
295 296 297 298 299 300 301 302
// This is a separated namespace for manipulate SelectedRows typed
// data. Like merge duplicated rows, adding two SelectedRows etc.
//
// Another group of functors is called "scatter updates", which means
// use SelectedRows to update a dense tensor with different Ops, like
// add or mul.
namespace scatter {

L
lidanqing 已提交
303
template <typename T>
304
typename std::enable_if<std::is_same<T, platform::bfloat16>::value>::type
L
lidanqing 已提交
305 306
elementwise_add_to(BlasT<platform::CPUDeviceContext, T>* blas, size_t data_len,
                   const T* in, T* out) {
307
#ifdef PADDLE_WITH_MKLDNN
L
lidanqing 已提交
308
  onednn_handler_axpy(data_len, T(1.f), in, out);
309
#else
L
lidanqing 已提交
310
  blas->AXPY(data_len, T(1.f), in, out);
311
#endif
L
lidanqing 已提交
312
}
313

314
template <typename T>
315 316
typename std::enable_if<std::is_same<T, float>::value ||
                        std::is_same<T, double>::value ||
317 318
                        std::is_same<T, platform::complex<float>>::value ||
                        std::is_same<T, platform::complex<double>>::value>::type
319 320 321
elementwise_add_to(BlasT<platform::CPUDeviceContext, T>* blas, size_t data_len,
                   const T* in, T* out) {
  blas->AXPY(data_len, T(1.f), in, out);
Q
Qiao Longfei 已提交
322 323
}

324 325 326 327
template <typename T>
typename std::enable_if<std::is_integral<T>::value>::type elementwise_add_to(
    BlasT<platform::CPUDeviceContext, T>* blas, size_t data_len, const T* in,
    T* out) {
T
Tao Luo 已提交
328
  for (size_t i = 0; i < data_len; i++) {
Q
Qiao Longfei 已提交
329 330
    out[i] += in[i];
  }
T
typhoonzero 已提交
331 332 333 334
}

template <typename T>
struct MergeAdd<platform::CPUDeviceContext, T> {
T
wip  
typhoonzero 已提交
335
  framework::SelectedRows operator()(const platform::CPUDeviceContext& context,
336 337
                                     const framework::SelectedRows& input,
                                     const bool sorted_result = false) {
T
wip  
typhoonzero 已提交
338
    framework::SelectedRows out;
339
    (*this)(context, input, &out, sorted_result);
S
sneaxiy 已提交
340 341 342 343 344
    return out;
  }

  void operator()(const platform::CPUDeviceContext& context,
                  const framework::SelectedRows& input,
345 346
                  framework::SelectedRows* output,
                  const bool sorted_result = false) {
347 348
    std::vector<const framework::SelectedRows*> inputs;
    inputs.push_back(&input);
349
    (*this)(context, inputs, output, sorted_result);
350
  }
T
typhoonzero 已提交
351

352 353
  void operator()(const platform::CPUDeviceContext& context,
                  const std::vector<const framework::SelectedRows*>& inputs,
354 355
                  framework::SelectedRows* output,
                  const bool sorted_result = false) {
Q
Qiao Longfei 已提交
356
    if (inputs.size() == 0) {
M
minqiyang 已提交
357
      VLOG(3) << "no input! return";
Q
Qiao Longfei 已提交
358 359 360 361
      return;
    }
    const framework::SelectedRows* has_value_input = nullptr;
    for (auto* in : inputs) {
Q
Qiao Longfei 已提交
362
      if (in->rows().size() > 0) {
Q
Qiao Longfei 已提交
363 364 365 366 367
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
M
minqiyang 已提交
368
      VLOG(3) << "no input has value! just return" << std::endl;
Q
Qiao Longfei 已提交
369 370 371 372
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
373 374
    framework::SelectedRows& out = *output;
    std::set<int64_t> merged_row_set;
375
    size_t row_num = 0;
376
    for (auto* input : inputs) {
Q
Qiao Longfei 已提交
377
      if (input->rows().size() == 0) {
Q
Qiao Longfei 已提交
378 379
        continue;
      }
380
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
381 382 383
                        platform::errors::InvalidArgument(
                            "All inputs should have same "
                            "dimension except for the first one."));
384
      PADDLE_ENFORCE_EQ(input_height, input->height(),
385 386
                        platform::errors::InvalidArgument(
                            "All inputs should have same height."));
387
      row_num += input->rows().size();
388 389
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }
390

391
    out.set_height(input_height);
T
wip  
typhoonzero 已提交
392
    out.mutable_value()->mutable_data<T>(
T
typhoonzero 已提交
393
        framework::make_ddim(
394
            {static_cast<int64_t>(merged_row_set.size()), input_width}),
T
typhoonzero 已提交
395
        context.GetPlace());
396
    auto* out_data = out.mutable_value()->data<T>();
T
typhoonzero 已提交
397

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
    if (merged_row_set.size() == row_num && !sorted_result) {
      // no duplicated ids, just concat the result together
      std::vector<int64_t> merge_rows;
      merge_rows.reserve(row_num);
      // concat rows
      for (auto* in : inputs) {
        merge_rows.insert(merge_rows.end(), in->rows().begin(),
                          in->rows().end());
      }
      out.set_rows(merge_rows);
      auto in_place = inputs[0]->place();
      auto out_place = out.place();
      int64_t copied_numel = 0;
      for (auto* in : inputs) {
        auto* in_data = in->value().data<T>();
413
        auto in_numel = in->rows().size() * input_width;
414
        memory::Copy(BOOST_GET_CONST(platform::CPUPlace, out_place),
415
                     out_data + copied_numel,
416
                     BOOST_GET_CONST(platform::CPUPlace, in_place), in_data,
417 418 419 420 421 422
                     in_numel * sizeof(T));
        copied_numel += in_numel;
      }
    } else {
      std::vector<int64_t> merge_rows(merged_row_set.begin(),
                                      merged_row_set.end());
T
typhoonzero 已提交
423

424 425 426
      if (sorted_result) {
        std::sort(merge_rows.begin(), merge_rows.end());
      }
T
typhoonzero 已提交
427

428 429 430
      out.set_rows(merge_rows);

      math::SetConstant<platform::CPUDeviceContext, T> constant_functor;
431
      constant_functor(context, out.mutable_value(), static_cast<T>(0.f));
432 433 434 435

      std::unordered_map<int64_t, size_t> rows_to_id;
      for (size_t i = 0; i < merge_rows.size(); ++i) {
        rows_to_id[merge_rows[i]] = i;
Q
Qiao Longfei 已提交
436
      }
437 438 439 440 441 442 443 444 445 446 447

      auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
      for (auto* input : inputs) {
        if (input->rows().size() == 0) {
          continue;
        }
        auto* input_data = input->value().data<T>();
        auto& input_rows = input->rows();

        for (size_t i = 0; i < input_rows.size(); i++) {
          size_t out_i = rows_to_id[input_rows[i]];
448 449 450
          elementwise_add_to<T>(&blas, static_cast<size_t>(input_width),
                                &input_data[i * input_width],
                                &out_data[out_i * input_width]);
451
        }
T
typhoonzero 已提交
452 453
      }
    }
T
wip  
typhoonzero 已提交
454 455 456
  }
};

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
template <typename T>
struct MergeAverage<platform::CPUDeviceContext, T> {
  framework::SelectedRows operator()(const platform::CPUDeviceContext& context,
                                     const framework::SelectedRows& input) {
    framework::SelectedRows out;
    (*this)(context, input, &out);
    return out;
  }

  void operator()(const platform::CPUDeviceContext& context,
                  const framework::SelectedRows& input,
                  framework::SelectedRows* output) {
    std::vector<const framework::SelectedRows*> inputs;
    inputs.push_back(&input);
    (*this)(context, inputs, output);
  }

  void operator()(const platform::CPUDeviceContext& context,
                  const std::vector<const framework::SelectedRows*>& inputs,
                  framework::SelectedRows* output) {
    if (inputs.size() == 0) {
      VLOG(3) << "no input! return";
      return;
    }
    const framework::SelectedRows* has_value_input = nullptr;
    for (auto* in : inputs) {
      if (in->rows().size() > 0) {
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
      VLOG(3) << "no input has value! just return" << std::endl;
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
    framework::SelectedRows& out = *output;
    std::set<int64_t> merged_row_set;
    size_t row_num = 0;
    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
502 503 504
                        platform::errors::InvalidArgument(
                            "All inputs should have same "
                            "dimension except for the first one."));
505
      PADDLE_ENFORCE_EQ(input_height, input->height(),
506 507
                        platform::errors::InvalidArgument(
                            "All input should have same height."));
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
      row_num += input->rows().size();
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }

    out.set_height(input_height);
    out.mutable_value()->mutable_data<T>(
        framework::make_ddim(
            {static_cast<int64_t>(merged_row_set.size()), input_width}),
        context.GetPlace());
    auto* out_data = out.mutable_value()->data<T>();

    std::vector<int64_t> merge_rows(merged_row_set.begin(),
                                    merged_row_set.end());
    std::sort(merge_rows.begin(), merge_rows.end());

    out.set_rows(merge_rows);

    math::SetConstant<platform::CPUDeviceContext, T> constant_functor;
    constant_functor(context, out.mutable_value(), 0.0);

    std::unordered_map<int64_t, size_t> rows_to_id;
    for (size_t i = 0; i < merge_rows.size(); ++i) {
      rows_to_id[merge_rows[i]] = i;
    }

    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      auto* input_data = input->value().data<T>();
      auto& input_rows = input->rows();

      for (size_t i = 0; i < input_rows.size(); i++) {
        size_t out_i = rows_to_id[input_rows[i]];
543 544 545
        elementwise_add_to<T>(&blas, static_cast<size_t>(input_width),
                              &input_data[i * input_width],
                              &out_data[out_i * input_width]);
546 547 548 549 550 551 552 553 554 555 556 557
      }
    }
    size_t input_width_cast = static_cast<size_t>(input_width);
    T count = static_cast<T>(inputs.size());
    for (size_t i = 0; i < merge_rows.size(); i++) {
      for (size_t j = 0; j < input_width_cast; j++) {
        out_data[i * input_width + j] = out_data[i * input_width + j] / count;
      }
    }
  }
};

T
wip  
typhoonzero 已提交
558 559
template struct MergeAdd<platform::CPUDeviceContext, int>;
template struct MergeAdd<platform::CPUDeviceContext, int64_t>;
Q
Qiao Longfei 已提交
560 561
template struct MergeAdd<platform::CPUDeviceContext, float>;
template struct MergeAdd<platform::CPUDeviceContext, double>;
562
template struct MergeAdd<platform::CPUDeviceContext,
563
                         paddle::platform::complex<float>>;
564
template struct MergeAdd<platform::CPUDeviceContext,
565
                         paddle::platform::complex<double>>;
566 567
template struct MergeAdd<platform::CPUDeviceContext,
                         paddle::platform::bfloat16>;
T
wip  
typhoonzero 已提交
568

569 570 571 572 573
template struct MergeAverage<platform::CPUDeviceContext, int>;
template struct MergeAverage<platform::CPUDeviceContext, int64_t>;
template struct MergeAverage<platform::CPUDeviceContext, float>;
template struct MergeAverage<platform::CPUDeviceContext, double>;

T
wip  
typhoonzero 已提交
574 575
template <typename T>
struct UpdateToTensor<platform::CPUDeviceContext, T> {
T
typhoonzero 已提交
576 577 578
  void operator()(const platform::CPUDeviceContext& context,
                  const ScatterOps& op, const framework::SelectedRows& input1,
                  framework::Tensor* input2) {
T
wip  
typhoonzero 已提交
579 580
    auto in1_height = input1.height();
    auto in2_dims = input2->dims();
581 582 583 584 585 586
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
T
wip  
typhoonzero 已提交
587 588 589 590 591

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
592 593 594 595 596 597
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2->numel() / in1_height));
T
wip  
typhoonzero 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641

    auto* in1_data = in1_value.data<T>();
    auto* input2_data = input2->data<T>();

    // FIXME(typhoonzero): use macro fix the below messy code.
    switch (op) {
      case ScatterOps::ASSIGN:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::ADD:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::SUB:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] -=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::SUBBY:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j] -
            input2_data[in1_rows[i] * in1_row_numel + j];
        break;
      case ScatterOps::MUL:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] *=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::DIV:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] /=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::DIVBY:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j] /
            input2_data[in1_rows[i] * in1_row_numel + j];
        break;
    }
T
typhoonzero 已提交
642 643 644 645
  }
};

}  // namespace scatter
646 647 648
}  // namespace math
}  // namespace operators
}  // namespace paddle