lod_tensor_to_array_op.cc 6.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */
#include "paddle/framework/lod_rank_table.h"
#include "paddle/framework/lod_tensor_array.h"
#include "paddle/framework/op_registry.h"
17
#include "paddle/operators/detail/safe_ref.h"
D
dzhwinter 已提交
18
#include "paddle/platform/device_context.h"
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

namespace paddle {
namespace operators {

struct CopyRange {
  size_t begin;
  size_t end;
};

class LoDTensorToArrayOp : public framework::OperatorBase {
 public:
  LoDTensorToArrayOp(const std::string &type,
                     const framework::VariableNameMap &inputs,
                     const framework::VariableNameMap &outputs,
                     const framework::AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}
  void Run(const framework::Scope &scope,
D
dzhwinter 已提交
36
           const platform::Place &place) const override {
37 38 39 40 41 42 43
    auto &x = detail::Ref(scope.FindVar(Input("X")), "Cannot find input %s",
                          Input("X"))
                  .Get<framework::LoDTensor>();
    auto &rank_table = detail::Ref(scope.FindVar(Input("RankTable")))
                           .Get<framework::LoDRankTable>();
    auto &out = *detail::Ref(scope.FindVar(Output("Out")))
                     .GetMutable<framework::LoDTensorArray>();
44 45 46
    auto &items = rank_table.items();
    auto max_seq_len = items[0].length;
    auto rank_level = rank_table.level();
47 48 49 50

    PADDLE_ENFORCE_LT(rank_level, x.lod().size(),
                      "Input should be a LOD tensor, and size is at least %d",
                      rank_level + 1);
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    out.resize(max_seq_len);
    std::vector<std::vector<CopyRange>> copy_ranges(max_seq_len);

    // set out[i] lod
    for (size_t t = 0; t < max_seq_len; t++) {
      auto &lod = *out[t].mutable_lod();
      lod.clear();
      for (auto &item : items) {
        if (t >= item.length) {
          break;
        }
        size_t start_idx = x.lod()[rank_level][item.index] + t;
        auto lod_and_offset = framework::GetSubLoDAndAbsoluteOffset(
            x.lod(), start_idx, start_idx + 1, rank_level + 1);
        auto &lod_length = lod_and_offset.first;
        framework::AppendLoD(&lod, lod_length);
        size_t start_offset = lod_and_offset.second.first;
        size_t end_offset = lod_and_offset.second.second;
        copy_ranges[t].emplace_back(CopyRange{start_offset, end_offset});
      }
    }
    for (size_t i = 0; i < max_seq_len; ++i) {
      auto &ranges = copy_ranges[i];
      size_t height = std::accumulate(
          ranges.begin(), ranges.end(), 0UL,
          [](size_t a, const CopyRange &b) { return a + b.end - b.begin; });
      auto x_dim = x.dims();
      x_dim[0] = static_cast<int64_t>(height);
      out[i].Resize(x_dim);
      out[i].mutable_data(x.place(), x.type());
      size_t offset = 0;
      for (auto &each_range : ranges) {
        size_t len = each_range.end - each_range.begin;
        if (len == 0) {
          continue;
        }
        // out[i][offset: offset+len] = x[each_range.begin: each_range.end]
D
dzhwinter 已提交
88 89
        auto slice = out[i].Slice(static_cast<int>(offset),
                                  static_cast<int>(offset + len));
D
dzhwinter 已提交
90 91 92 93

        platform::DeviceContextPool &pool = platform::DeviceContextPool::Get();
        auto &dev_ctx = *pool.Borrow(place);

D
dzhwinter 已提交
94 95 96
        framework::CopyFrom(x.Slice(static_cast<int>(each_range.begin),
                                    static_cast<int>(each_range.end)),
                            x.place(), dev_ctx, &slice);
97 98 99 100 101 102 103 104
        offset += len;
      }
    }
  }
};

class LoDTensorToArrayOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
105
  LoDTensorToArrayOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker)
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "");
    AddInput("RankTable", "");
    AddOutput("Out", "");
    AddComment("");
  }
};

class LoDTensorToArrayInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
    PADDLE_ENFORCE(context->HasInput("X"),
                   "Input(X) of LoDTensorToArrayOp should not be null.");
    PADDLE_ENFORCE(
        context->HasInput("RankTable"),
        "Input(RankTable) of LoDTensorToArrayOp should not be null.");

    PADDLE_ENFORCE(context->HasOutput("Out"),
                   "Output(Out) of LoDTensorToArrayOp should not be null.");

    auto x_dim = context->GetInputDim("X");
    // The first dim of each LoDTensor in Output can only be set at run-time.;
    // We still have to Resize each LoDTensor in Output.
    context->SetOutputDim("Out", x_dim);
  }
};

class LoDTensorToArrayInferVarType : public framework::VarTypeInference {
 public:
Y
Yu Yang 已提交
135 136
  void operator()(const framework::OpDesc &op_desc,
                  framework::BlockDesc *block) const override {
137
    for (auto &out_var : op_desc.Output("Out")) {
138
      block->Var(out_var)->SetType(framework::proto::VarDesc::LOD_TENSOR_ARRAY);
139 140 141 142
    }
  }
};

143 144 145 146 147
class LoDTensorToArrayGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
Y
Yu Yang 已提交
148 149
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto *grad_op = new framework::OpDesc();
150 151 152 153 154
    grad_op->SetType("array_to_lod_tensor");
    grad_op->SetInput("X", OutputGrad("Out"));
    grad_op->SetInput("RankTable", Input("RankTable"));
    grad_op->SetOutput("Out", InputGrad("X"));
    grad_op->SetAttrMap(Attrs());
Y
Yu Yang 已提交
155
    return std::unique_ptr<framework::OpDesc>(grad_op);
156 157 158
  }
};

159 160 161 162 163 164 165
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(lod_tensor_to_array, ops::LoDTensorToArrayOp,
                  ops::LoDTensorToArrayOpProtoMaker,
                  ops::LoDTensorToArrayInferShape,
166 167
                  ops::LoDTensorToArrayInferVarType,
                  ops::LoDTensorToArrayGradMaker);