rank_loss_op.cc 7.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yibing Liu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yibing Liu 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/rank_loss_op.h"
S
sneaxiy 已提交
16
#include <memory>
17
#include <string>
Y
Yibing Liu 已提交
18 19 20 21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

class RankLossOp : public framework::OperatorWithKernel {
 public:
  RankLossOp(const std::string &type, const framework::VariableNameMap &inputs,
             const framework::VariableNameMap &outputs,
             const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

29
  void InferShape(framework::InferShapeContext *ctx) const override {
30 31 32 33 34 35
    PADDLE_ENFORCE_EQ(ctx->HasInput("Label"), true,
                      "Input(Label) shouldn't be null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput("Left"), true,
                      "Input(Left) shouldn't be null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput("Right"), true,
                      "Input(Right) shouldn't be null.");
Q
Qiao Longfei 已提交
36 37 38 39

    auto label_dims = ctx->GetInputDim("Label");
    auto left_dims = ctx->GetInputDim("Left");
    auto right_dims = ctx->GetInputDim("Right");
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
    // check label_dims valid
    PADDLE_ENFORCE_GE(label_dims.size(), 1,
                      "The dimension size of Input(Label) must be greater than "
                      "or equal to 1.");
    PADDLE_ENFORCE_LE(
        label_dims.size(), 2,
        "The dimension size of Input(Label) must be less than or equal to 2.");
    if (label_dims.size() == 2U) {
      PADDLE_ENFORCE_EQ(label_dims[1], 1,
                        "The last dimension of Input(Label) must be 1.");
    }
    // check left_dims valid
    PADDLE_ENFORCE_GE(left_dims.size(), 1,
                      "The dimension size of Input(Left) must be greater than "
                      "or equal to 1.");
    PADDLE_ENFORCE_LE(
        left_dims.size(), 2,
        "The dimension size of Input(Left) must be less than or equal to 2.");
    if (left_dims.size() == 2U) {
      PADDLE_ENFORCE_EQ(left_dims[1], 1,
                        "The last dimension of Input(Left) must be 1.");
    }
    // check right_dims valid
    PADDLE_ENFORCE_GE(right_dims.size(), 1,
                      "The dimension size of Input(Right) must be greater than "
                      "or equal to 1.");
    PADDLE_ENFORCE_LE(
        right_dims.size(), 2,
        "The dimension size of Input(Right) must be less than or equal to 2.");
    if (right_dims.size() == 2U) {
      PADDLE_ENFORCE_EQ(right_dims[1], 1,
                        "The last dimension of Input(Right) must be 1.");
    }
    PADDLE_ENFORCE_EQ(label_dims[0], left_dims[0],
                      "The first dimension of Input(Label) and Input(Left) "
                      "must have the same value.");
    PADDLE_ENFORCE_EQ(label_dims[0], right_dims[0],
                      "The first dimension of Input(Label) and Input(Right) "
                      "must have the same value.");
Q
Qiao Longfei 已提交
79
    ctx->SetOutputDim("Out", label_dims);
Y
Yibing Liu 已提交
80 81 82 83 84
  }
};

class RankLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
85
  void Make() override {
Y
Yibing Liu 已提交
86
    AddInput("Label",
Y
Yibing Liu 已提交
87 88 89 90 91 92 93 94 95 96 97
             "(2-D Tensor with shape [batch_size x 1]) "
             "The label indicating A ranked higher than B or not.");
    AddInput("Left",
             "(2-D Tensor with shape [batch_size x 1]) "
             "The output of RankNet for doc A.");
    AddInput("Right",
             "(2-D Tensor with shape [batch_size x 1]) "
             "The output of RankNet for doc B.");
    AddOutput("Out",
              "(2-D Tensor with shape [batch_size x 1]) "
              "The output loss of RankLoss operator.");
K
kexinzhao 已提交
98 99
    AddComment(R"DOC(
RankLoss Operator.
Y
Yibing Liu 已提交
100

K
kexinzhao 已提交
101 102 103
RankLoss operator for RankNet
(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf). 
RankNet is a pairwise ranking model with
Y
Yibing Liu 已提交
104 105 106 107 108 109
one training sample consisting of a pair of doc A and B, and the label P
indicating that A is ranked higher than B or not:

P = {0, 1} or {0, 0.5, 1}, where 0.5 means no information about the rank of
the input pair.

K
kexinzhao 已提交
110
The RankLoss operator takes three inputs: Left (o_i), Right (o_j) and Label
Y
Yibing Liu 已提交
111 112 113
(P_{i,j}), which represent the output score of RankNet for the two docs and 
the label respectively, and yields the rank loss C_{i,j} using the following 
equation:
Y
Yibing Liu 已提交
114

115 116
$$
  C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
Y
Yibing Liu 已提交
117 118
  o_{i,j} =  o_i - o_j  \\
  \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
119
$$
Y
Yibing Liu 已提交
120

Y
Yibing Liu 已提交
121
The operator can take batch inputs with size batch_size (batch_size >= 1).
Y
Yibing Liu 已提交
122

Y
Yibing Liu 已提交
123 124 125 126 127 128 129 130 131 132 133 134
)DOC");
  }
};

class RankLossGradOp : public framework::OperatorWithKernel {
 public:
  RankLossGradOp(const std::string &type,
                 const framework::VariableNameMap &inputs,
                 const framework::VariableNameMap &outputs,
                 const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

135
  void InferShape(framework::InferShapeContext *ctx) const override {
136 137 138 139 140 141 142 143 144 145
    PADDLE_ENFORCE_EQ(ctx->HasInput("Label"), true,
                      "Input(Label) shouldn't be null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput("Left"), true,
                      "Input(Left) shouldn't be null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput("Right"), true,
                      "Input(Right) shouldn't be null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
                      "Input(Out@GRAD) shouldn't be null.");
    auto left_dims = ctx->GetInputDim("Left");
    auto right_dims = ctx->GetInputDim("Right");
Q
Qiao Longfei 已提交
146 147 148 149
    auto left_grad_name = framework::GradVarName("Left");
    auto right_grad_name = framework::GradVarName("Right");

    if (ctx->HasOutput(left_grad_name)) {
150
      ctx->SetOutputDim(left_grad_name, left_dims);
Y
Yibing Liu 已提交
151
    }
Q
Qiao Longfei 已提交
152 153

    if (ctx->HasOutput(right_grad_name)) {
154
      ctx->SetOutputDim(right_grad_name, right_dims);
Y
Yibing Liu 已提交
155
    }
Y
Yibing Liu 已提交
156 157 158
  }
};

S
sneaxiy 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
class RankLossGradDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType("rank_loss_grad");
    op->SetInput("Label", Input("Label"));
    op->SetInput("Left", Input("Left"));
    op->SetInput("Right", Input("Right"));
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("Left"), InputGrad("Left"));
    op->SetOutput(framework::GradVarName("Right"), InputGrad("Right"));
    op->SetAttrMap(Attrs());
    return op;
  }
};

Y
Yibing Liu 已提交
178 179 180 181
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

Y
Yang Yang 已提交
182
REGISTER_OPERATOR(rank_loss, ops::RankLossOp, ops::RankLossOpMaker,
183 184
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(rank_loss_grad, ops::RankLossGradOp);
Y
Yibing Liu 已提交
185
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
186 187 188 189
    rank_loss, ops::RankLossKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
    rank_loss_grad,
    ops::RankLossGradKernel<paddle::platform::CPUDeviceContext, float>);