test_dist_base.py 10.1 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time

import unittest
import os
import sys
import signal
import subprocess
T
typhoonzero 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
import six


class TestDistRunnerBase(object):
    def get_model(self, batch_size=2):
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

    def get_transpiler(self, trainer_id, main_program, pserver_endpoints,
                       trainers):
        # NOTE: import fluid until runtime, or else forking processes will cause error.
        import paddle
        import paddle.fluid as fluid
        t = fluid.DistributeTranspiler()
        t.transpile(
            trainer_id=trainer_id,
            program=main_program,
            pservers=pserver_endpoints,
            trainers=trainers)
        return t

    def run_pserver(self, pserver_endpoints, trainers, current_endpoint,
                    trainer_id):
        import paddle
        import paddle.fluid as fluid
        self.get_model(batch_size=2)
        t = self.get_transpiler(trainer_id,
                                fluid.default_main_program(), pserver_endpoints,
                                trainers)
        pserver_prog = t.get_pserver_program(current_endpoint)
        startup_prog = t.get_startup_program(current_endpoint, pserver_prog)
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
        exe.run(pserver_prog)

    def run_trainer(self, place, endpoints, trainer_id, trainers, is_dist=True):
        import paddle
        import paddle.fluid as fluid
        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
        self.get_model(batch_size=2)
        if is_dist:
            t = self.get_transpiler(trainer_id,
                                    fluid.default_main_program(), endpoints,
                                    trainers)
            trainer_prog = t.get_trainer_program()
        else:
            trainer_prog = fluid.default_main_program()

        startup_exe = fluid.Executor(place)
        startup_exe.run(fluid.default_startup_program())

        strategy = fluid.ExecutionStrategy()
        strategy.num_threads = 1
        strategy.allow_op_delay = False
        exe = fluid.ParallelExecutor(
            True, loss_name=avg_cost.name, exec_strategy=strategy)

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = test_reader()

        data = next(reader_generator)
        first_loss, = exe.run(fetch_list=[avg_cost.name],
                              feed=feeder.feed(data))
        print(first_loss)

        for i in six.moves.xrange(5):
            data = next(reader_generator)
            loss, = exe.run(fetch_list=[avg_cost.name], feed=feeder.feed(data))

        data = next(reader_generator)
        last_loss, = exe.run(fetch_list=[avg_cost.name], feed=feeder.feed(data))
        print(last_loss)


def runtime_main(test_class):
    import paddle
    import paddle.fluid as fluid
    import paddle.fluid.core as core

    if len(sys.argv) != 7:
        print(
            "Usage: python dist_se_resnext.py [pserver/trainer] [endpoints] [trainer_id] [current_endpoint] [trainers] [is_dist]"
        )
    role = sys.argv[1]
    endpoints = sys.argv[2]
    trainer_id = int(sys.argv[3])
    current_endpoint = sys.argv[4]
    trainers = int(sys.argv[5])
    is_dist = True if sys.argv[6] == "TRUE" else False

    model = test_class()
    if role == "pserver":
        model.run_pserver(endpoints, trainers, current_endpoint, trainer_id)
    else:
        p = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        model.run_trainer(p, endpoints, trainer_id, trainers, is_dist)
X
Xin Pan 已提交
124 125 126 127 128 129 130 131 132


class TestDistBase(unittest.TestCase):
    def setUp(self):
        self._trainers = 2
        self._pservers = 2
        self._ps_endpoints = "127.0.0.1:9123,127.0.0.1:9124"
        self._python_interp = "python"

G
gongweibao 已提交
133
    def start_pserver(self, model_file, check_error_log):
X
Xin Pan 已提交
134 135 136 137 138 139 140 141
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
        ps0_cmd = "%s %s pserver %s 0 %s %d TRUE" % \
            (self._python_interp, model_file, self._ps_endpoints, ps0_ep,
             self._trainers)
        ps1_cmd = "%s %s pserver %s 0 %s %d TRUE" % \
            (self._python_interp, model_file, self._ps_endpoints, ps1_ep,
             self._trainers)

G
gongweibao 已提交
142 143 144 145 146 147 148 149
        ps0_pipe = subprocess.PIPE
        ps1_pipe = subprocess.PIPE
        if check_error_log:
            print("ps0_cmd:", ps0_cmd)
            print("ps1_cmd:", ps1_cmd)
            ps0_pipe = open("/tmp/ps0_err.log", "wb")
            ps1_pipe = open("/tmp/ps1_err.log", "wb")

X
Xin Pan 已提交
150
        ps0_proc = subprocess.Popen(
G
gongweibao 已提交
151
            ps0_cmd.split(" "), stdout=subprocess.PIPE, stderr=ps0_pipe)
X
Xin Pan 已提交
152
        ps1_proc = subprocess.Popen(
G
gongweibao 已提交
153 154 155 156 157 158
            ps1_cmd.split(" "), stdout=subprocess.PIPE, stderr=ps1_pipe)

        if not check_error_log:
            return ps0_proc, ps1_proc, None, None
        else:
            return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe
X
Xin Pan 已提交
159 160

    def _wait_ps_ready(self, pid):
X
polish  
Xin Pan 已提交
161
        retry_times = 50
X
Xin Pan 已提交
162 163 164 165 166 167 168 169
        while True:
            assert retry_times >= 0, "wait ps ready failed"
            time.sleep(3)
            try:
                # the listen_and_serv_op would touch a file which contains the listen port
                # on the /tmp directory until it was ready to process all the RPC call.
                os.stat("/tmp/paddle.%d.port" % pid)
                return
X
polish  
Xin Pan 已提交
170 171 172
            except os.error as e:
                sys.stderr.write('waiting for pserver: %s, left retry %d\n' %
                                 (e, retry_times))
X
Xin Pan 已提交
173 174
                retry_times -= 1

G
gongweibao 已提交
175
    def check_with_place(self, model_file, delta=1e-3, check_error_log=False):
X
Xin Pan 已提交
176 177 178 179 180
        # *ATTENTION* THIS TEST NEEDS AT LEAST 2GPUS TO RUN
        required_envs = {
            "PATH": os.getenv("PATH"),
            "PYTHONPATH": os.getenv("PYTHONPATH"),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH"),
W
Wu Yi 已提交
181 182
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
            "FLAGS_cudnn_deterministic": "1"
X
Xin Pan 已提交
183
        }
G
gongweibao 已提交
184 185 186 187 188

        if check_error_log:
            required_envs["GLOG_v"] = "7"
            required_envs["GLOG_logtostderr"] = "1"

X
Xin Pan 已提交
189
        # Run local to get a base line
X
clean  
Xin Pan 已提交
190
        env_local = {"CUDA_VISIBLE_DEVICES": "0"}
X
Xin Pan 已提交
191 192 193 194
        env_local.update(required_envs)
        local_cmd = "%s %s trainer %s 0 %s %d FLASE" % \
            (self._python_interp, model_file,
             "127.0.0.1:1234", "127.0.0.1:1234", 1)
G
gongweibao 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
        if not check_error_log:
            local_proc = subprocess.Popen(
                local_cmd.split(" "),
                stdout=subprocess.PIPE,
                stderr=subprocess.PIPE,
                env=env_local)
        else:
            print("trainer cmd:", local_cmd)
            err_log = open("/tmp/trainer.err.log", "wb")
            local_proc = subprocess.Popen(
                local_cmd.split(" "),
                stdout=subprocess.PIPE,
                stderr=err_log,
                env=env_local)

X
Xin Pan 已提交
210 211 212 213 214 215 216
        local_proc.wait()
        out, err = local_proc.communicate()
        local_ret = out
        sys.stderr.write('local_loss: %s\n' % local_ret)
        sys.stderr.write('local_stderr: %s\n' % err)

        # Run dist train to compare with local results
G
gongweibao 已提交
217 218
        ps0, ps1, ps0_pipe, ps1_pipe = self.start_pserver(model_file,
                                                          check_error_log)
X
Xin Pan 已提交
219 220 221 222 223 224 225 226 227 228 229
        self._wait_ps_ready(ps0.pid)
        self._wait_ps_ready(ps1.pid)

        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
        tr0_cmd = "%s %s trainer %s 0 %s %d TRUE" % \
            (self._python_interp, model_file, self._ps_endpoints, ps0_ep,
             self._trainers)
        tr1_cmd = "%s %s trainer %s 1 %s %d TRUE" % \
            (self._python_interp, model_file, self._ps_endpoints, ps1_ep,
             self._trainers)

X
clean  
Xin Pan 已提交
230 231
        env0 = {"CUDA_VISIBLE_DEVICES": "0"}
        env1 = {"CUDA_VISIBLE_DEVICES": "1"}
X
Xin Pan 已提交
232 233 234 235
        env0.update(required_envs)
        env1.update(required_envs)
        FNULL = open(os.devnull, 'w')

G
gongweibao 已提交
236 237 238 239 240 241 242 243
        tr0_pipe = subprocess.PIPE
        tr1_pipe = subprocess.PIPE
        if check_error_log:
            print("tr0_cmd:", tr0_cmd)
            print("tr1_cmd:", tr1_cmd)
            tr0_pipe = open("/tmp/tr0_err.log", "wb")
            tr1_pipe = open("/tmp/tr1_err.log", "wb")

X
Xin Pan 已提交
244 245 246
        tr0_proc = subprocess.Popen(
            tr0_cmd.split(" "),
            stdout=subprocess.PIPE,
G
gongweibao 已提交
247
            stderr=tr0_pipe,
X
Xin Pan 已提交
248 249 250 251
            env=env0)
        tr1_proc = subprocess.Popen(
            tr1_cmd.split(" "),
            stdout=subprocess.PIPE,
G
gongweibao 已提交
252
            stderr=tr1_pipe,
X
Xin Pan 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
            env=env1)

        tr0_proc.wait()
        tr1_proc.wait()
        out, err = tr0_proc.communicate()
        sys.stderr.write('dist_stderr: %s\n' % err)
        loss_data0 = out
        sys.stderr.write('dist_loss: %s\n' % loss_data0)
        lines = loss_data0.split("\n")
        dist_first_loss = eval(lines[0].replace(" ", ","))[0]
        dist_last_loss = eval(lines[1].replace(" ", ","))[0]

        local_lines = local_ret.split("\n")
        local_first_loss = eval(local_lines[0])[0]
        local_last_loss = eval(local_lines[1])[0]

G
gongweibao 已提交
269 270 271 272 273 274 275
        # close trainer file
        if check_error_log:
            tr0_pipe.close()
            tr1_pipe.close()

            ps0_pipe.close()
            ps1_pipe.close()
T
typhoonzero 已提交
276
        # FIXME: use terminate() instead of sigkill.
X
Xin Pan 已提交
277 278 279
        os.kill(ps0.pid, signal.SIGKILL)
        os.kill(ps1.pid, signal.SIGKILL)
        FNULL.close()
T
typhoonzero 已提交
280 281 282

        self.assertAlmostEqual(local_first_loss, dist_first_loss, delta=delta)
        self.assertAlmostEqual(local_last_loss, dist_last_loss, delta=delta)