backward.py 29.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from paddle.fluid import framework as framework
F
update  
fengjiayi 已提交
16
from . import core
F
update  
fengjiayi 已提交
17
import collections
18
import copy
19 20
import six
from . import unique_name
21

Y
yuyang18 已提交
22
__all__ = ['append_backward']
23 24


25 26
def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None):
    """
27
    Traverse all ops in op_descs[begin_idx : end_idx],
28 29
    if any op has inputs/outputs named "old_name", rename it as 'new_name'
    """
F
update  
fengjiayi 已提交
30 31 32
    if begin_idx is None:
        begin_idx = 0
    if end_idx is None:
33
        end_idx = len(op_descs)
F
update  
fengjiayi 已提交
34
    for i in range(begin_idx, end_idx):
35
        op_desc = op_descs[i]
F
fengjiayi 已提交
36 37 38 39
        if isinstance(op_desc, tuple):
            op_desc = op_desc[0]
        op_desc.rename_input(old_name, new_name)
        op_desc.rename_output(old_name, new_name)
F
update  
fengjiayi 已提交
40 41


F
fengjiayi 已提交
42
def _create_op_desc_(op_type, inputs, outputs, attrs):
43 44 45
    """
    Create a C++ OpDesc object with specified inputs, outputs and attributes.
    """
F
fengjiayi 已提交
46 47
    op_desc = core.OpDesc()
    op_desc.set_type(op_type)
48 49 50 51 52 53 54 55 56 57 58 59
    for para, args in list(inputs.items()):
        op_desc.set_input(
            para,
            list(
                map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
                    args)))
    for para, args in list(outputs.items()):
        op_desc.set_output(
            para,
            list(
                map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
                    args)))
Y
yuyang18 已提交
60 61 62 63 64 65

    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()

    if op_role_attr_name not in attrs:
        attrs[
            op_role_attr_name] = core.op_proto_and_checker_maker.OpRole.Backward
66
    for name, val in list(attrs.items()):
F
fengjiayi 已提交
67 68 69 70 71 72 73
        if isinstance(val, framework.Block):
            op_desc.set_block_attr(name, val.desc)
        else:
            op_desc.set_attr(name, val)
    return op_desc


74 75 76 77 78 79
def _infer_var_data_type_(grad_var_name, block):
    """
    Infer the data type of given grad variable
    """
    grad_var = block.desc.find_var(grad_var_name.encode("ascii"))
    fwd_name = _strip_grad_suffix_(grad_var_name.encode("ascii"))
F
fengjiayi 已提交
80 81 82 83
    if block.desc.has_var_recursive(fwd_name):
        fwd_var = block.desc.find_var_recursive(fwd_name.encode("ascii"))
        grad_var.set_dtype(fwd_var.dtype())
    else:
84
        grad_var.set_dtype(core.VarDesc.VarType.FP32)
F
fengjiayi 已提交
85 86


F
fengjiayi 已提交
87
def _all_in_set_(cands, s):
88 89 90
    """
    Test if all elements of 'cands' are in set 's'
    """
F
fengjiayi 已提交
91 92
    if len(cands) == 0:
        return False
F
fengjiayi 已提交
93 94 95 96 97 98
    for c in cands:
        if not c in s:
            return False
    return True


99 100 101 102 103 104 105 106 107 108 109 110
def _some_in_set_(cands, s):
    """
    Test if some elements of 'cands' are in set 's'
    """
    if len(cands) == 0:
        return False
    for c in cands:
        if c in s:
            return True
    return False


F
fengjiayi 已提交
111
def _strip_grad_suffix_(name):
112 113 114 115 116
    """
    Strip the grad suffix from the given varibale name
    e.g. x@GRAD ==> x
         y@GRAD@RENAME@1 ==> y
    """
117 118 119
    if isinstance(name, six.text_type):
        name = name.encode()
    pos = name.find(six.b(core.grad_var_suffix()))
F
fengjiayi 已提交
120
    return name[:pos] if pos != -1 else name
F
fengjiayi 已提交
121 122 123


def _append_grad_suffix_(name):
124 125 126 127
    """
    Append grad suffix to the given variable name
    e.g. x ==> x@GRAD
    """
128 129 130
    if isinstance(name, six.text_type):
        name = name.encode()
    return name + six.b(core.grad_var_suffix())
F
fengjiayi 已提交
131 132


F
fengjiayi 已提交
133
def _addup_repetitive_outputs_(op_descs):
134 135
    """
    In backward part, an variable may be the output of more than one ops.
F
fengjiayi 已提交
136 137
    And one op may yield its multiple outputs to the same variable.
    In these cases, the variable should be the accumulation of all the outputs.
138 139
    `sum_op`s are added to implement the accumulate.
    """
F
update  
fengjiayi 已提交
140 141
    pending_sum_ops = []
    var_rename_count = collections.defaultdict(int)
F
fengjiayi 已提交
142 143
    renamed_vars = collections.defaultdict(list)
    for idx, op_desc in enumerate(op_descs):
F
update  
fengjiayi 已提交
144
        for var_name in op_desc.input_arg_names():
F
fengjiayi 已提交
145
            if len(renamed_vars[var_name]) > 1:
146 147 148
                pending_sum_ops.append((_create_op_desc_(
                    "sum", {"X": renamed_vars[var_name]}, {"Out": [var_name]},
                    {"use_mkldnn": False}), idx))
F
fengjiayi 已提交
149
                renamed_vars[var_name] = [var_name]
F
update  
fengjiayi 已提交
150
        for param_idx, param_name in enumerate(op_desc.output_names()):
F
fengjiayi 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
            arg_names = op_desc.output(param_name)
            for arg_idx, var_name in enumerate(arg_names):
                if var_name == core.empty_var_name(
                ) or var_name in op_desc.input_arg_names():
                    # empty variable or inplace op
                    continue
                if len(renamed_vars[var_name]) == 0:
                    # it's the first time we get the variable
                    renamed_vars[var_name] = [var_name]
                else:
                    if len(renamed_vars[var_name]) == 1:
                        new_name = var_name + "@RENAME@" + \
                            str(var_rename_count[var_name])
                        var_rename_count[var_name] += 1
                        # rename original var_name
                        renamed_vars[var_name][0] = new_name
                        _rename_arg_(op_descs, var_name, new_name, 0, idx)
                        _rename_arg_(pending_sum_ops, var_name, new_name)

F
update  
fengjiayi 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182
                        for p in op_desc.output_names()[:param_idx]:
                            p_arg_names = op_desc.output(p)
                            if var_name in p_arg_names:
                                op_desc.set_output(p, [
                                    new_name if x == var_name else x
                                    for x in p_arg_names
                                ])

                        arg_names = [
                            new_name if x == var_name else x
                            for x in arg_names[:arg_idx]
                        ] + arg_names[arg_idx:]

F
update  
fengjiayi 已提交
183
                    new_name = var_name + "@RENAME@" + \
F
fengjiayi 已提交
184
                        str(var_rename_count[var_name])
F
fengjiayi 已提交
185
                    var_rename_count[var_name] += 1
F
fengjiayi 已提交
186 187 188
                    arg_names[arg_idx] = new_name
                    op_desc.set_output(param_name, arg_names)
                    renamed_vars[var_name].append(new_name)
F
update  
fengjiayi 已提交
189

190
    for var_name, inputs in list(renamed_vars.items()):
F
update  
fengjiayi 已提交
191
        if len(inputs) > 1:
192 193 194
            pending_sum_ops.append(
                (_create_op_desc_("sum", {"X": inputs}, {"Out": [var_name]},
                                  {"use_mkldnn": False}), len(op_descs)))
F
fengjiayi 已提交
195
    # sum_op descs are sorted according to their insert position
F
update  
fengjiayi 已提交
196
    for p in reversed(pending_sum_ops):
F
fengjiayi 已提交
197 198 199 200 201 202
        op_descs.insert(p[1], p[0])

    return op_descs


def _remove_no_grad_branch_(op_descs, no_grad_set):
203 204 205 206
    """
    Remove unnecessary grad ops
    A grad op can be removed in two cases:
        1. all outputs of the grad op are in 'no_grad_set'
F
fengjiayi 已提交
207
        2. all grad inputs of the grad op are in 'no_grad_set'
208
    """
F
fengjiayi 已提交
209 210

    def _op_can_be_removed_(op_desc, no_grad_set):
F
fengjiayi 已提交
211 212
        out_arg_names = op_desc.output_arg_names()
        if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set):
F
fengjiayi 已提交
213
            return True
214 215 216 217
        if _all_in_set_([
                name for name in op_desc.input_arg_names()
                if name.find(core.grad_var_suffix()) != -1
        ], no_grad_set):
F
fengjiayi 已提交
218
            no_grad_set.update(out_arg_names)
F
fengjiayi 已提交
219 220 221
            return True
        return False

F
fengjiayi 已提交
222
    # Remove ops whose outputs are all in no_grad_dict
223 224 225 226
    op_descs = [
        op_desc for op_desc in op_descs
        if not _op_can_be_removed_(op_desc, no_grad_set)
    ]
F
fengjiayi 已提交
227 228
    # Insert fill_zeros_like_op
    to_insert = []
F
fengjiayi 已提交
229
    for idx, op_desc in enumerate(op_descs):
F
fengjiayi 已提交
230
        for arg in op_desc.input_arg_names():
F
fengjiayi 已提交
231 232 233
            if core.grad_var_suffix() in arg and arg in no_grad_set:
                to_insert.append((_create_op_desc_("fill_zeros_like", {
                    "X": [_strip_grad_suffix_(arg)]
234
                }, {"Out": [arg]}, {}), idx))
F
fengjiayi 已提交
235

236
    list([op_descs.insert(p[1], p[0]) for p in reversed(to_insert)])
F
fengjiayi 已提交
237 238 239 240

    return op_descs


241
from .proto import framework_pb2
Y
Yang Yang 已提交
242 243 244 245 246 247 248 249


def serialize_op_decs(op_desc):
    protostr = op_desc.serialize_to_string()
    proto = framework_pb2.OpDesc.FromString(str(protostr))
    return proto.__str__()


250 251 252 253 254 255 256 257 258 259
def _callback_lookup_(op):
    """
    Only used in _append_backward_ops_
    Build and returns a callback function for certain op. For example

    parallel_do:           AllReduce

    :param op:
    :return: callback function
    """
Y
Yang Yang 已提交
260
    if op.type == 'parallel_do' and op.attr('use_nccl'):
Q
qiaolongfei 已提交
261
        all_vars = op.block.vars
262
        param_names = set(op.input('parameters'))
263 264 265 266
        param_names = [
            name for name in param_names
            if all_vars[name].stop_gradient is False
        ]
267 268 269
        param_grad_names = [n + "@GRAD" for n in param_names]

        class ParallelDoCallBack(object):
Y
Yang Yang 已提交
270
            def __init__(self, param_grad_names, parallel_scopes_name):
271 272
                self.has_inserted_nccl_init = False
                self.param_grad_names = param_grad_names
Y
Yang Yang 已提交
273
                self.parallel_scopes_name = parallel_scopes_name
274 275

            def __call__(self, block, context):
Y
Yang Yang 已提交
276
                if not self.has_inserted_nccl_init:
Y
Yang Yang 已提交
277
                    op_desc = _create_op_desc_(
Y
Yang Yang 已提交
278 279
                        "ncclInit",
                        {"parallel_scopes": self.parallel_scopes_name},
Y
Yang Yang 已提交
280 281 282
                        {"Communicator": ['nccl_com__do_not_change_']}, {})
                    block.program.global_block().desc.append_op().copy_from(
                        op_desc)
Y
Yang Yang 已提交
283 284 285 286 287
                    self.has_inserted_nccl_init = True

                current_op_desc = context["__current_op_desc__"]
                for o_param in current_op_desc.output_names():
                    for o_argu in current_op_desc.output(o_param):
288
                        if o_argu in self.param_grad_names:
Y
Yang Yang 已提交
289 290
                            allreduce_out_name = o_argu + "__nccl_all_reduce__"
                            op_desc = _create_op_desc_(
C
chengduoZH 已提交
291 292
                                "ncclReduce",
                                {
Y
Yang Yang 已提交
293
                                    "X": [o_argu],
Y
Yang Yang 已提交
294 295
                                    "Communicator":
                                    ['nccl_com__do_not_change_']
C
chengduoZH 已提交
296 297 298 299
                                },
                                {"Out": [allreduce_out_name]},
                                {"reduction": "ncclSum",
                                 "root": 0}, )
Y
Yang Yang 已提交
300 301 302 303 304 305
                            block.desc.append_op().copy_from(op_desc)

                            op_desc = _create_op_desc_(
                                "assign", {"X": [allreduce_out_name]},
                                {"Out": [o_argu]}, {})
                            block.desc.append_op().copy_from(op_desc)
306

Y
Yang Yang 已提交
307 308
        return ParallelDoCallBack(param_grad_names,
                                  op.output("parallel_scopes"))
309 310 311 312
    else:
        return None


313 314
def _append_backward_ops_(block,
                          ops,
F
fengjiayi 已提交
315 316 317
                          target_block,
                          no_grad_dict,
                          grad_to_var,
Y
Yang Yang 已提交
318
                          callbacks=None):
319 320 321 322 323
    """
    Create all grad ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
324
        ops(Op): the forward operators whose backward ops need to be added
325
        target_block(Block): the block which is going to hold new generated grad ops
326
        no_grad_dict(dict):
327 328 329 330 331
            key(int)  block index
            val(set) a set of varibale names. These varibales have no gradient
        grad_to_var(dict)(output argument):
            key(str): grad variable name
            val(str): corresponding forward variable name
F
fengjiayi 已提交
332
        callback(callable object): a callable object used to decorate new generated grad ops
333
    """
Y
Yang Yang 已提交
334
    if callbacks is not None:
Y
Yang Yang 已提交
335 336 337 338
        assert (isinstance(callbacks, list))
        for cb in callbacks:
            if not hasattr(cb, '__call__'):
                raise ValueError("'callback' must be a callable object.")
F
fengjiayi 已提交
339

F
fengjiayi 已提交
340
    # grad_op_descs holds created grad_op, and will be appended to target_block
F
fengjiayi 已提交
341 342
    grad_op_descs = []
    program = block.program
343
    for op in reversed(ops):
F
fengjiayi 已提交
344 345 346
        grad_sub_block_list = []
        # If the op has its own sub-block, deal with the sub-block first
        if op.has_attr("sub_block"):
G
gongweibao 已提交
347
            sub_block = program.block(op.block_attr_id("sub_block"))
Y
Yu Yang 已提交
348
            grad_sub_block = program.create_block()
W
Wu Yi 已提交
349
            grad_sub_block._set_forward_block_idx(sub_block.idx)
Y
Yang Yang 已提交
350 351 352 353 354 355 356 357
            cb = _callback_lookup_(op)
            if cb is not None:
                if callbacks is None:
                    new_callbacks = [cb]
                else:
                    new_callbacks = callbacks + [_callback_lookup_(op)]
                _append_backward_ops_(sub_block, sub_block.ops, grad_sub_block,
                                      no_grad_dict, grad_to_var, new_callbacks)
Y
Yang Yang 已提交
358
            else:
Y
Yang Yang 已提交
359 360
                _append_backward_ops_(sub_block, sub_block.ops, grad_sub_block,
                                      no_grad_dict, grad_to_var, callbacks)
Y
Yu Yang 已提交
361 362

            program.rollback()
F
fengjiayi 已提交
363 364
            grad_sub_block_list.append(grad_sub_block.desc)

F
fengjiayi 已提交
365
        # Getting op's corresponding grad_op
F
fengjiayi 已提交
366 367
        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
            op.desc, no_grad_dict[block.idx], grad_sub_block_list)
Y
Yang Yu 已提交
368

F
fengjiayi 已提交
369 370 371 372 373 374 375
        grad_op_descs.extend(grad_op_desc)
        grad_to_var.update(op_grad_to_var)

    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs)

    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
F
fengjiayi 已提交
376

F
fengjiayi 已提交
377
    # append op_desc in grad_op_descs to target_block
Y
yuyang18 已提交
378 379
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
F
update  
fengjiayi 已提交
380
    for op_desc in grad_op_descs:
F
fengjiayi 已提交
381 382
        new_op_desc = target_block.desc.append_op()
        new_op_desc.copy_from(op_desc)
Y
yuyang18 已提交
383
        new_op_desc.set_attr(op_role_attr_name, backward)
Y
Yang Yang 已提交
384
        grad_to_var["__current_op_desc__"] = new_op_desc
Y
Yang Yang 已提交
385 386 387 388
        if callbacks is not None:
            assert (isinstance(callbacks, list))
            for cb in callbacks:
                cb(block=target_block, context=grad_to_var)
F
update  
fengjiayi 已提交
389

F
fengjiayi 已提交
390 391

def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
392 393 394 395 396 397 398 399 400 401 402 403
    """
    Create new variables required by backward pass.

    Args:
        block(Block): the block where new variables will be created
        start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created
        grad_to_var(dict):
            key(str): grad variable name
            val(str): corresponding forward variable name
            In most cases, this dict is generated by _append_backward_ops_()
        grad_info_map(dict)(output argument):
            key(str): forward variable name
404
            val(tuple): a tuple of (str, Block), str is the corresponding grad name, Block is the block containing grad variable
405
    """
F
fengjiayi 已提交
406 407 408
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        if op_desc.has_attr("sub_block"):
G
gongweibao 已提交
409
            sub_block = block.program.block(op_desc.block_attr_id("sub_block"))
F
fengjiayi 已提交
410 411 412 413 414 415 416 417 418 419
            _append_backward_vars_(sub_block, 0, grad_to_var, grad_info_map)
        new_vars = set()
        # create new gradient variables
        for grad_var_name in op_desc.output_arg_names():
            grad_var_name = grad_var_name.encode("ascii")
            if block.desc.has_var_recursive(
                    grad_var_name) or grad_var_name == core.empty_var_name():
                continue
            block.desc.var(grad_var_name)
            new_vars.add(grad_var_name)
420
            if grad_var_name not in grad_to_var:
F
fengjiayi 已提交
421 422 423 424 425
                continue
            grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block)
        # infer_shape and infer_type
        op_desc.infer_var_type(block.desc)
        op_desc.infer_shape(block.desc)
Y
Yang Yang 已提交
426 427 428
        # ncclInit dones't need to set data_type
        if op_desc.type() == 'ncclInit':
            continue
F
fengjiayi 已提交
429 430 431
        for arg in op_desc.output_arg_names():
            if arg in new_vars:
                _infer_var_data_type_(arg, block)
F
update  
fengjiayi 已提交
432 433


434 435 436 437 438 439 440 441 442 443
def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map):
    var_map = copy.copy(target_grad_map)
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        for name in op_desc.input_arg_names():
            if name in var_map:
                op_desc.rename_input(name, var_map[name])

        for name in op_desc.output_arg_names():
            if block.desc.find_var(name.encode("ascii")):
Y
Yu Yang 已提交
444
                new_name = unique_name.generate(name)
445 446 447
                op_desc.rename_output(name, new_name)
                var_map[name] = new_name

448
    for g, ng in list(var_map.items()):
449 450 451 452 453 454 455 456 457 458 459
        if g in grad_to_var:
            grad_to_var[ng] = grad_to_var[g]
            grad_to_var.pop(g)


def _get_stop_gradients_(program):
    no_grad_dict = dict()
    assert isinstance(program, framework.Program)
    for block in program.blocks:
        assert isinstance(block, framework.Block)
        block_no_grad_set = set()
460
        for var in list(block.vars.values()):
461 462 463 464 465 466 467
            assert isinstance(var, framework.Variable)
            if var.stop_gradient:
                block_no_grad_set.add(_append_grad_suffix_(var.name))
        no_grad_dict[block.idx] = block_no_grad_set
    return no_grad_dict


Y
Yang Yang 已提交
468 469
def append_backward(loss, parameter_list=None, no_grad_set=None,
                    callbacks=None):
470
    """
F
fengjiayi 已提交
471 472
    Append backward part to main_program.

473 474 475
    A complete neural network training is made up of forward and backward
    propagation. However, when we configure a network, we only need to
    specify its forwrd part. The backward part is generated automatically
F
fengjiayi 已提交
476 477
    according to the forward part by this function.

478
    In most cases, users do not need to invoke this function manually. It
F
fengjiayi 已提交
479
    will be automatically invoked by the optimizer's `minimize` function.
F
fengjiayi 已提交
480 481

    Args:
F
fengjiayi 已提交
482
        loss(Variable): The loss variable of the network.
483 484 485
        parameter_list(list[string]|None): Names of parameters that need
                                           to be updated by optimizers.
                                           If it is None, all parameters
F
fengjiayi 已提交
486 487
                                           will be updated.
                                           Default: None
488 489 490
        no_grad_set(set|None): Variables in the Block 0 whose gradients
                               should be ignored. All variables with
                               `step_gradient=True` from all blocks will
F
fengjiayi 已提交
491 492
                               be automatically added into this set.
                               Default: None
493 494 495 496 497 498 499 500 501 502 503 504 505 506
        callbacks(list[callable object]|None): The callbacks are used for
                                               doing some custom jobs during
                                               backward part building. All
                                               callable objects in it will
                                               be invoked once each time a
                                               new gradient operator is added
                                               into the program. The callable
                                               object must has two input
                                               parameters: 'block' and 'context'.
                                               The 'block' is the block which
                                               the new gradient operator will
                                               be added to. The 'context' is a
                                               map, whose keys are gradient
                                               variable names and values are
F
fengjiayi 已提交
507
                                               corresponding original variables.
508 509 510 511 512 513
                                               In addition to this, the 'context'
                                               has another special key-value pair:
                                               the key is string '__current_op_desc__'
                                               and the value is the op_desc of the
                                               gradient operator who has just
                                               triggered the callable object.
F
fengjiayi 已提交
514 515

    Returns:
516 517
        list[(Variable,Variable)]: Pairs of parameter and its
        corresponding gradients. The key is the parameter and the
F
fengjiayi 已提交
518 519 520 521 522 523 524 525
        value is gradient variable.

    Raises:
        AssertionError: If `loss` is not an instance of Variable.

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
526 527 528 529
            # network configuration code
            # ...
            avg_loss = fluid.layers.mean(loss)
            param_grad_list = fluid.backward.append_backward(loss=avg_loss)
530 531
    """
    assert isinstance(loss, framework.Variable)
Y
yuyang18 已提交
532

Y
Fix bug  
yuyang18 已提交
533 534 535 536 537 538 539 540 541 542 543
    if loss.op is None:
        # the loss is from a cloned program. Find loss op manually.
        for op in reversed(loss.block.ops):
            assert isinstance(op, framework.Operator)
            if len(op.output_arg_names) == 1 and op.output_arg_names[
                    0] == loss.name:
                loss.op = op
                break
        if loss.op is None:
            raise ValueError("loss.op is None. Should not happend")

Y
yuyang18 已提交
544 545 546 547
    loss.op.set_attr(core.op_proto_and_checker_maker.kOpRoleAttrName(),
                     int(core.op_proto_and_checker_maker.OpRole.Forward) |
                     int(core.op_proto_and_checker_maker.OpRole.Loss))

Y
Yang Yang 已提交
548 549
    if callbacks is not None:
        isinstance(callbacks, list)
Y
Yu Yang 已提交
550

F
fengjiayi 已提交
551
    program = loss.block.program
F
fengjiayi 已提交
552
    if no_grad_set is None:
553 554 555
        no_grad_set = set()
    no_grad_set = copy.copy(no_grad_set)
    no_grad_dict = _get_stop_gradients_(program)
556
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
Y
Yu Yang 已提交
557

F
update  
fengjiayi 已提交
558
    grad_info_map = dict()
F
fengjiayi 已提交
559
    root_block = program.block(0)
F
fengjiayi 已提交
560

F
fengjiayi 已提交
561 562
    fwd_op_num = root_block.desc.op_size()
    current_block_idx = program.current_block_idx
F
fengjiayi 已提交
563 564
    grad_to_var = dict()

Y
yuyang18 已提交
565 566 567 568 569 570 571 572 573 574
    op_desc = _create_op_desc_(
        "fill_constant", {}, {"Out": [_append_grad_suffix_(loss.name)]}, {
            "shape": [1],
            "value": 1.0,
            "dtype": loss.dtype,
            "force_cpu": False,
            core.op_proto_and_checker_maker.kOpRoleAttrName():
            int(core.op_proto_and_checker_maker.OpRole.Backward) |
            int(core.op_proto_and_checker_maker.OpRole.Loss),
        })
575 576 577 578
    root_block.desc.append_op().copy_from(op_desc)

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
    op_path = _find_op_path_(root_block, [loss], [], block_no_grad_set)
579
    no_grad_dict[0].update(list(map(_append_grad_suffix_, block_no_grad_set)))
580 581

    _append_backward_ops_(root_block, op_path, root_block, no_grad_dict,
Y
Yang Yang 已提交
582
                          grad_to_var, callbacks)
583 584 585 586 587 588

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(root_block, fwd_op_num, grad_to_var, {})

F
fengjiayi 已提交
589
    _append_backward_vars_(root_block, fwd_op_num, grad_to_var, grad_info_map)
F
fengjiayi 已提交
590

F
fengjiayi 已提交
591
    program.current_block_idx = current_block_idx
W
Wu Yi 已提交
592
    program._sync_with_cpp()
F
fengjiayi 已提交
593

594 595 596
    if parameter_list is not None:
        parameters = parameter_list
    else:
F
fengjiayi 已提交
597
        params = program.global_block().all_parameters()
598
        parameters = [param.name for param in params]
599

600 601
    params_and_grads = []
    for param in parameters:
F
update  
fengjiayi 已提交
602
        if param not in grad_info_map:
F
fengjiayi 已提交
603
            continue
F
update  
fengjiayi 已提交
604
        grad_info = grad_info_map[param]
F
fengjiayi 已提交
605
        grad_block = grad_info[1]
606 607 608 609
        if not grad_block.has_var(grad_info[0]):
            raise ValueError("grad block[{0}] did not have grad var {1}".format(
                grad_info[1], grad_info[0]))
        # Get the param var from the global block
F
fengjiayi 已提交
610
        param_var = program.global_block().var(param)
611 612 613 614 615
        grad_var = grad_block.var(grad_info[0])
        if loss.block.has_var(grad_info[0]):
            params_and_grads.append((param_var, grad_var))
        else:
            params_and_grads.append((param_var, None))
Y
yuyang18 已提交
616 617 618 619 620 621 622 623 624 625 626 627 628

    op_role_var_attr_name = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
    for p, g in params_and_grads:
        if g is None:
            continue
        for op in reversed(program.global_block().ops):
            assert isinstance(op, framework.Operator)
            if g.name in op.output_arg_names:
                g.op = op
                break

        if g.op is None:
            raise ValueError("Unexpected branch")
Y
yuyang18 已提交
629
        attr_val = [p.name, g.name]
Y
yuyang18 已提交
630 631 632
        if g.op.has_attr(op_role_var_attr_name):
            attr_val.extend(g.op.attr(op_role_var_attr_name))
        g.op.set_attr(op_role_var_attr_name, attr_val)
Y
yuyang18 已提交
633

634
    return params_and_grads
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717


def _as_list(x):
    if x is None:
        return []
    return list(x) if isinstance(x, collections.Sequence) else [x]


def _find_op_path_(block, outputs, inputs, no_grad_set):
    """
    no_grad_set will also be changed
    """
    input_names = set([inp.name for inp in inputs])
    output_names = set([out.name for out in outputs])

    relevant_op_flags = [True] * len(block.ops)

    # All the inputs of the block are used if inputs is empty,
    if inputs:
        for i, op in enumerate(block.ops):
            if _some_in_set_(op.desc.input_arg_names(), input_names):
                for name in op.desc.output_arg_names():
                    if name not in no_grad_set:
                        input_names.add(name)
            else:
                relevant_op_flags[i] = False

    for i, op in reversed(list(enumerate(block.ops))):
        if _some_in_set_(op.desc.output_arg_names(), output_names):
            for name in op.desc.input_arg_names():
                if name not in no_grad_set:
                    output_names.add(name)
        else:
            relevant_op_flags[i] = False

    op_path = [
        block.ops[i] for i in range(len(block.ops)) if relevant_op_flags[i]
    ]

    if inputs:
        for op in op_path:
            for name in op.desc.input_arg_names():
                if name not in input_names:
                    no_grad_set.add(name)

    return op_path


def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
    """
    Backpropagate the graidents of targets to inputs.

    Args:
        targets(Variable|list[Variable]): The target variables
        inputs(Variable|list[Variable]): The input variables
        no_grad_set(set[string]): The names of variables that have no gradients
            in Block 0. All variables with `stop_gradient=True` from all blocks
            will be automatically added.

    Return:
        (list[Variable]): list of gradients for inputs
        If an input does not affect targets, the corresponding gradient variable
        will be None
    """
    targets = _as_list(targets)
    inputs = _as_list(inputs)
    target_gradients = _as_list(target_gradients)

    block = targets[0].block
    prog = block.program
    block_idx = block.idx

    if not target_gradients:
        target_gradients = [None] * len(targets)

    if len(targets) != len(target_gradients):
        raise ValueError(
            "Should have the same number of target_gradients as targets")

    if no_grad_set is None:
        no_grad_set = set()
    no_grad_set = copy.copy(no_grad_set)
    no_grad_dict = _get_stop_gradients_(prog)
718
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751

    fwd_op_num = block.desc.op_size()

    target_grad_map = {}
    for i, grad in enumerate(target_gradients):
        target = targets[i]
        if grad is None:
            grad_name = _append_grad_suffix_(target.name)
            op_desc = _create_op_desc_("fill_constant_batch_size_like",
                                       {"Input": [target.name]},
                                       {"Out": [grad_name]}, {
                                           "shape": target.shape,
                                           "value": 1.0,
                                           "dtype": target.dtype,
                                           'input_dim_idx': 0,
                                           'output_dim_idx': 0
                                       })
            block.desc.append_op().copy_from(op_desc)
        else:
            if target.block.idx != block_idx or target.block.program != prog:
                raise ValueError("all targets must be in the same block")
            if target.shape != grad.shape:
                raise ValueError(
                    "The shapes of target and grad are different: %s %s" % (
                        target.name, grad.name))
            target_grad_map[_append_grad_suffix_(target.name)] = grad.name

    for input in inputs:
        if input.block.program != prog:
            raise "input must be in the same program as targets"

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
    op_path = _find_op_path_(block, targets, inputs, block_no_grad_set)
752
    no_grad_dict[0].update(list(map(_append_grad_suffix_, block_no_grad_set)))
753 754 755 756 757 758 759 760 761 762
    grad_to_var = dict()
    grad_info_map = dict()
    _append_backward_ops_(block, op_path, block, no_grad_dict, grad_to_var)

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(block, fwd_op_num, grad_to_var, target_grad_map)

    _append_backward_vars_(block, fwd_op_num, grad_to_var, grad_info_map)
W
Wu Yi 已提交
763
    prog._sync_with_cpp()
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778

    grad_vars = []
    for input_var in inputs:
        if input_var.name not in grad_info_map:
            grad_vars.append(None)
        else:
            grad_info = grad_info_map[input_var.name]
            grad_block = grad_info[1]
            grad_var = grad_block.var(grad_info[0])
            grad_vars.append(grad_var)

    if len(grad_vars) == 1:
        return grad_vars[0]
    else:
        return grad_vars