stat.py 29.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define statistical functions of a tensor
16

17
import paddle
18 19
from paddle import _C_ops
from paddle.framework import in_dynamic_mode, in_dynamic_or_new_ir_mode
20

21
from ..common_ops_import import Variable
22 23
from ..fluid.data_feeder import check_type, check_variable_and_dtype
from ..framework import LayerHelper, core
24
from .math import _get_reduce_axis_with_tensor
25
from .search import where
26

27 28
__all__ = []

29 30 31 32 33 34

def mean(x, axis=None, keepdim=False, name=None):
    """
    Computes the mean of the input tensor's elements along ``axis``.

    Args:
35
        x (Tensor): The input Tensor with data type float32, float64.
36 37 38 39 40 41 42
        axis (int|list|tuple, optional): The axis along which to perform mean
            calculations. ``axis`` should be int, list(int) or tuple(int). If
            ``axis`` is a list/tuple of dimension(s), mean is calculated along
            all element(s) of ``axis`` . ``axis`` or element(s) of ``axis``
            should be in range [-D, D), where D is the dimensions of ``x`` . If
            ``axis`` or element(s) of ``axis`` is less than 0, it works the
            same way as :math:`axis + D` . If ``axis`` is None, mean is
43
            calculated over all elements of ``x``. Default is None.
44
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
45
            in the output Tensor. If ``keepdim`` is True, the dimensions of
46 47 48 49 50 51 52 53 54 55 56 57 58
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of average along ``axis`` of ``x``, with the same data
        type as ``x``.

    Examples:
        .. code-block:: python

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
            >>> import paddle

            >>> x = paddle.to_tensor([[[1., 2., 3., 4.],
            ...                        [5., 6., 7., 8.],
            ...                        [9., 10., 11., 12.]],
            ...                       [[13., 14., 15., 16.],
            ...                        [17., 18., 19., 20.],
            ...                        [21., 22., 23., 24.]]])
            >>> out1 = paddle.mean(x)
            >>> print(out1.numpy())
            12.5
            >>> out2 = paddle.mean(x, axis=-1)
            >>> print(out2.numpy())
            [[ 2.5  6.5 10.5]
             [14.5 18.5 22.5]]
            >>> out3 = paddle.mean(x, axis=-1, keepdim=True)
            >>> print(out3.numpy())
            [[[ 2.5]
              [ 6.5]
              [10.5]]
             [[14.5]
              [18.5]
              [22.5]]]
            >>> out4 = paddle.mean(x, axis=[0, 2])
            >>> print(out4.numpy())
            [ 8.5 12.5 16.5]
85
    """
86
    if in_dynamic_or_new_ir_mode():
87
        return _C_ops.mean(x, axis, keepdim)
88 89 90 91 92 93 94
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        check_variable_and_dtype(
            x,
            'x/input',
            ['uint16', 'float16', 'float32', 'float64'],
            'mean/reduce_mean',
95
        )
96 97 98 99 100 101 102 103 104 105 106
        check_type(
            axis, 'axis/dim', (int, list, tuple, Variable), 'mean/reduce_mean'
        )
        if isinstance(axis, (list, tuple)):
            for item in axis:
                check_type(
                    item,
                    'elements of axis/dim',
                    (int, Variable),
                    'mean/reduce_mean',
                )
107

108
        helper = LayerHelper('mean', **locals())
109

110 111 112 113 114 115 116 117 118
        attrs = {'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='reduce_mean',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
119 120


121
def var(x, axis=None, unbiased=True, keepdim=False, name=None):
122
    """
123
    Computes the variance of ``x`` along ``axis`` .
124 125

    Args:
L
LoneRanger 已提交
126
        x (Tensor): The input Tensor with data type float16, float32, float64.
127 128 129 130
        axis (int|list|tuple, optional): The axis along which to perform variance calculations. ``axis`` should be int, list(int) or tuple(int).

            - If ``axis`` is a list/tuple of dimension(s), variance is calculated along all element(s) of ``axis`` . ``axis`` or element(s) of ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            - If ``axis`` or element(s) of ``axis`` is less than 0, it works the same way as :math:`axis + D` .
131 132 133 134 135
            - If ``axis`` is None, variance is calculated over all elements of ``x``. Default is None.

        unbiased (bool, optional): Whether to use the unbiased estimation. If ``unbiased`` is True, the divisor used in the computation is :math:`N - 1`, where :math:`N` represents the number of elements along ``axis`` , otherwise the divisor is :math:`N`. Default is True.
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result tensor will have one fewer dimension than the input unless keep_dim is true. Default is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
136 137

    Returns:
138
        Tensor, results of variance along ``axis`` of ``x``, with the same data type as ``x``.
139 140 141 142

    Examples:
        .. code-block:: python

143
            >>> import paddle
144

145 146 147 148 149 150 151
            >>> x = paddle.to_tensor([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]])
            >>> out1 = paddle.var(x)
            >>> print(out1.numpy())
            2.6666667
            >>> out2 = paddle.var(x, axis=1)
            >>> print(out2.numpy())
            [1.         4.3333335]
152
    """
153
    if not in_dynamic_mode():
L
LoneRanger 已提交
154 155 156
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'var'
        )
157 158

    u = mean(x, axis, True, name)
159
    out = paddle.sum(paddle.pow((x - u), 2), axis, keepdim=keepdim, name=name)
160

161
    dtype = x.dtype
162 163 164
    n = paddle.cast(paddle.numel(x), paddle.int64) / paddle.cast(
        paddle.numel(out), paddle.int64
    )
165
    n = n.astype(dtype)
166
    if unbiased:
167
        one_const = paddle.ones([], x.dtype)
168
        n = where(n > one_const, n - 1.0, one_const)
169
    n.stop_gradient = True
170 171 172
    out /= n
    return out

S
swtkiwi 已提交
173

174 175 176
def std(x, axis=None, unbiased=True, keepdim=False, name=None):
    """
    Computes the standard-deviation of ``x`` along ``axis`` .
L
Liufang Sang 已提交
177 178

    Args:
L
LoneRanger 已提交
179
        x (Tensor): The input Tensor with data type float16, float32, float64.
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
        axis (int|list|tuple, optional): The axis along which to perform
            standard-deviation calculations. ``axis`` should be int, list(int)
            or tuple(int). If ``axis`` is a list/tuple of dimension(s),
            standard-deviation is calculated along all element(s) of ``axis`` .
            ``axis`` or element(s) of ``axis`` should be in range [-D, D),
            where D is the dimensions of ``x`` . If ``axis`` or element(s) of
            ``axis`` is less than 0, it works the same way as :math:`axis + D` .
            If ``axis`` is None, standard-deviation is calculated over all
            elements of ``x``. Default is None.
        unbiased (bool, optional): Whether to use the unbiased estimation. If
            ``unbiased`` is True, the standard-deviation is calculated via the
            unbiased estimator. If ``unbiased`` is True,  the divisor used in
            the computation is :math:`N - 1`, where :math:`N` represents the
            number of elements along ``axis`` , otherwise the divisor is
            :math:`N`. Default is True.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
L
Liufang Sang 已提交
202 203

    Returns:
204 205 206
        Tensor, results of standard-deviation along ``axis`` of ``x``, with the
        same data type as ``x``.

L
Liufang Sang 已提交
207 208 209
    Examples:
        .. code-block:: python

210
            >>> import paddle
211

212 213 214 215 216 217 218 219 220 221
            >>> x = paddle.to_tensor([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]])
            >>> out1 = paddle.std(x)
            >>> print(out1.numpy())
            1.6329932
            >>> out2 = paddle.std(x, unbiased=False)
            >>> print(out2.numpy())
            1.490712
            >>> out3 = paddle.std(x, axis=1)
            >>> print(out3.numpy())
            [1.       2.081666]
222

L
Liufang Sang 已提交
223
    """
224
    if not in_dynamic_mode():
L
LoneRanger 已提交
225 226 227
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'std'
        )
228 229
    out = var(**locals())
    return paddle.sqrt(out)
230 231 232 233


def numel(x, name=None):
    """
234
    Returns the number of elements for a tensor, which is a 0-D int64 Tensor with shape [].
235 236

    Args:
237
        x (Tensor): The input Tensor, it's data type can be bool, float16, float32, float64, int32, int64, complex64, complex128.
238 239
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
240 241

    Returns:
242
        Tensor: The number of elements for the input Tensor, whose shape is [].
243 244 245 246

    Examples:
        .. code-block:: python

247
            >>> import paddle
248

249 250 251 252
            >>> x = paddle.full(shape=[4, 5, 7], fill_value=0, dtype='int32')
            >>> numel = paddle.numel(x)
            >>> print(numel.numpy())
            140
253 254 255


    """
256
    if in_dynamic_mode():
257
        return _C_ops.numel(x)
258 259 260 261 262 263 264 265 266
    else:
        if not isinstance(x, Variable):
            raise TypeError("x must be a Tensor in numel")
        helper = LayerHelper('numel', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.INT64
        )
        helper.append_op(type='size', inputs={'Input': x}, outputs={'Out': out})
        return out
Z
zhulei 已提交
267 268


269
def nanmedian(x, axis=None, keepdim=False, name=None):
270 271 272 273 274 275 276
    r"""
    Compute the median along the specified axis, while ignoring NaNs.

    If the valid count of elements is a even number,
    the average value of both elements in the middle is calculated as the median.

    Args:
277
        x (Tensor): The input Tensor, it's data type can be int32, int64, float16, bfloat16, float32, float64.
278 279 280 281 282 283 284 285 286
        axis (None|int|list|tuple, optional):
            The axis along which to perform median calculations ``axis`` should be int or list of int.
            ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` is less than 0, it works the same way as :math:`axis + D`.
            If ``axis`` is None, median is calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
287
            the output Tensor is squeezed in ``axis`` . Default is False.
288 289 290 291 292 293 294 295 296
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of median along ``axis`` of ``x``. The output dtype is the same as `x`.

    Examples:
        .. code-block:: python

297 298
            >>> import paddle
            >>> x = paddle.to_tensor([[float('nan'), 2. , 3. ], [0. , 1. , 2. ]])
299

300 301 302
            >>> y1 = x.nanmedian()
            >>> print(y1.numpy())
            2.0
303

304 305 306
            >>> y2 = x.nanmedian(0)
            >>> print(y2.numpy())
            [0.  1.5 2.5]
307

308 309 310
            >>> y3 = x.nanmedian(0, keepdim=True)
            >>> print(y3.numpy())
            [[0.  1.5 2.5]]
311

312 313 314
            >>> y4 = x.nanmedian((0, 1))
            >>> print(y4.numpy())
            2.0
315 316 317 318 319 320 321 322 323 324 325 326 327 328
    """
    if not isinstance(x, Variable):
        raise TypeError("In median, the input x should be a Tensor.")

    if isinstance(axis, (list, tuple)) and len(axis) == 0:
        raise ValueError("Axis list should not be empty.")

    if axis is None:
        axis = []
    elif isinstance(axis, tuple):
        axis = list(axis)
    elif isinstance(axis, int):
        axis = [axis]

329
    if in_dynamic_mode():
Z
zyfncg 已提交
330
        return _C_ops.nanmedian(x, axis, keepdim)
331 332 333 334
    else:
        check_variable_and_dtype(
            x,
            'X',
335
            ['int32', 'int64', 'float16', 'float32', 'float64', 'uint16'],
336 337
            'nanmedian',
        )
338

339 340 341 342 343 344 345 346 347 348 349
        helper = LayerHelper('nanmedian', **locals())
        attrs = {'axis': axis, 'keepdim': keepdim}
        out = helper.create_variable_for_type_inference(x.dtype)
        medians = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='nanmedian',
            inputs={'X': x},
            outputs={'Out': out, 'MedianIndex': medians},
            attrs=attrs,
        )
        return out
350 351


Z
zhulei 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
def median(x, axis=None, keepdim=False, name=None):
    """
    Compute the median along the specified axis.

    Args:
        x (Tensor): The input Tensor, it's data type can be bool, float16, float32, float64, int32, int64.
        axis (int, optional): The axis along which to perform median calculations ``axis`` should be int.
            ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` is less than 0, it works the same way as :math:`axis + D`.
            If ``axis`` is None, median is calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of median along ``axis`` of ``x``. If data type of ``x`` is float64, data type of results will be float64, otherwise data type will be float32.

    Examples:
        .. code-block:: python

376
            >>> import paddle
Z
zhulei 已提交
377

378 379 380 381 382 383
            >>> x = paddle.arange(12).reshape([3, 4])
            >>> print(x)
            Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0 , 1 , 2 , 3 ],
             [4 , 5 , 6 , 7 ],
             [8 , 9 , 10, 11]])
Z
zhulei 已提交
384

385 386 387 388
            >>> y1 = paddle.median(x)
            >>> print(y1)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            5.50000000)
Z
zhulei 已提交
389

390 391 392 393
            >>> y2 = paddle.median(x, axis=0)
            >>> print(y2)
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [4., 5., 6., 7.])
Z
zhulei 已提交
394

395 396 397 398
            >>> y3 = paddle.median(x, axis=1)
            >>> print(y3)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.50000000, 5.50000000, 9.50000000])
Z
zhulei 已提交
399

400 401 402 403
            >>> y4 = paddle.median(x, axis=0, keepdim=True)
            >>> print(y4)
            Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[4., 5., 6., 7.]])
Z
zhulei 已提交
404 405 406 407

    """
    if not isinstance(x, Variable):
        raise TypeError("In median, the input x should be a Tensor.")
408

409 410 411
    if x.size == 0:
        raise ValueError("In median, the size of input x should not be 0.")

412
    is_flatten = False
Z
zhulei 已提交
413
    dims = len(x.shape)
414 415 416 417 418
    if dims == 0:
        assert axis in [
            -1,
            0,
            None,
419
        ], 'when input 0-D, axis can only be [-1, 0] or default None'
420 421 422 423 424
        is_flatten = True

    if axis is None:
        is_flatten = True

Z
zhulei 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
    if is_flatten:
        x = paddle.flatten(x)
        axis = 0
    else:
        if not isinstance(axis, int) or not (axis < dims and axis >= -dims):
            raise ValueError(
                "In median, axis should be none or an integer in range [-rank(x), rank(x))."
            )
        if axis < 0:
            axis += dims
    sz = x.shape[axis]
    kth = sz >> 1
    tensor_topk, idx = paddle.topk(x, kth + 1, axis=axis, largest=False)
    dtype = 'float64' if x.dtype == core.VarDesc.VarType.FP64 else 'float32'
    if sz & 1 == 0:
        out_tensor = paddle.slice(
441 442
            tensor_topk, axes=[axis], starts=[kth - 1], ends=[kth]
        ) + paddle.slice(tensor_topk, axes=[axis], starts=[kth], ends=[kth + 1])
Z
zhulei 已提交
443 444
        out_tensor = paddle.cast(out_tensor, dtype=dtype) / 2
    else:
445 446 447 448 449 450
        out_tensor = paddle.cast(
            paddle.slice(
                tensor_topk, axes=[axis], starts=[kth], ends=[kth + 1]
            ),
            dtype=dtype,
        )
451
    out_tensor = out_tensor + paddle.sum(
452 453
        paddle.cast(paddle.isnan(x), dtype=dtype) * x, axis=axis, keepdim=True
    )
454 455 456
    if is_flatten:
        if keepdim:
            out_tensor = out_tensor.reshape([1] * dims)
Z
zhulei 已提交
457
        else:
458
            out_tensor = out_tensor.reshape([])
Z
zhulei 已提交
459
    else:
460 461
        if not keepdim:
            out_tensor = out_tensor.squeeze(axis)
Z
zhulei 已提交
462
    return out_tensor
463 464


465
def _compute_quantile(x, q, axis=None, keepdim=False, ignore_nan=False):
466 467 468
    """
    Compute the quantile of the input along the specified axis.

469
    Args:
470
        x (Tensor): The input Tensor, it's data type can be float32, float64, int32, int64.
471
        q (int|float|list): The q for calculate quantile, which should be in range [0, 1]. If q is a list,
472 473 474 475 476 477 478 479 480 481 482
            each q will be calculated and the first dimension of output is same to the number of ``q`` .
        axis (int|list, optional): The axis along which to calculate quantile. ``axis`` should be int or list of int.
            ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` is less than 0, it works the same way as :math:`axis + D`.
            If ``axis`` is a list, quantile is calculated over all elements of given axises.
            If ``axis`` is None, quantile is calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
483 484 485
        ignore_nan: (bool, optional): Whether to ignore NaN of input Tensor.
            If ``ignore_nan`` is True, it will calculate nanquantile.
            Otherwise it will calculate quantile. Default is False.
486 487

    Returns:
488 489
        Tensor, results of quantile along ``axis`` of ``x``.
        In order to obtain higher precision, data type of results will be float64.
490
    """
491
    # Validate x
492 493
    if not isinstance(x, Variable):
        raise TypeError("input x should be a Tensor.")
494 495 496 497 498 499 500 501 502 503 504

    # Validate q
    if isinstance(q, (int, float)):
        q = [q]
    elif isinstance(q, (list, tuple)):
        if len(q) <= 0:
            raise ValueError("q should not be empty")
    else:
        raise TypeError("Type of q should be int, float, list or tuple.")

    # Validate axis
505
    dims = len(x.shape)
506
    out_shape = list(x.shape)
507 508 509 510 511 512 513 514 515
    if axis is None:
        x = paddle.flatten(x)
        axis = 0
        out_shape = [1] * dims
    else:
        if isinstance(axis, list):
            axis_src, axis_dst = [], []
            for axis_single in axis:
                if not isinstance(axis_single, int) or not (
516 517
                    axis_single < dims and axis_single >= -dims
                ):
518 519 520 521 522 523 524
                    raise ValueError(
                        "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
                    )
                if axis_single < 0:
                    axis_single = axis_single + dims
                axis_src.append(axis_single)
                out_shape[axis_single] = 1
525

526 527
            axis_dst = list(range(-len(axis), 0))
            x = paddle.moveaxis(x, axis_src, axis_dst)
528 529 530 531 532 533
            if len(axis_dst) == 0:
                x = paddle.flatten(x)
                axis = 0
            else:
                x = paddle.flatten(x, axis_dst[0], axis_dst[-1])
                axis = axis_dst[0]
534 535 536 537 538 539 540 541
        else:
            if not isinstance(axis, int) or not (axis < dims and axis >= -dims):
                raise ValueError(
                    "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
                )
            if axis < 0:
                axis += dims
            out_shape[axis] = 1
542 543

    mask = x.isnan()
544 545 546
    valid_counts = mask.logical_not().sum(
        axis=axis, keepdim=True, dtype='float64'
    )
547

548
    indices = []
549 550 551

    for q_num in q:
        if q_num < 0 or q_num > 1:
552
            raise ValueError("q should be in range [0, 1]")
553
        if in_dynamic_mode():
554 555 556 557
            q_num = paddle.to_tensor(q_num, dtype='float64')
        if ignore_nan:
            indices.append(q_num * (valid_counts - 1))
        else:
558
            # TODO: Use paddle.index_fill instead of where
559 560 561 562 563 564
            index = q_num * (valid_counts - 1)
            last_index = x.shape[axis] - 1
            nums = paddle.full_like(index, fill_value=last_index)
            index = paddle.where(mask.any(axis=axis, keepdim=True), nums, index)
            indices.append(index)

565 566
    sorted_tensor = paddle.sort(x, axis)

567
    outputs = []
568

569
    # TODO(chenjianye): replace the for-loop to directly take elements.
570 571 572
    for index in indices:
        indices_below = paddle.floor(index).astype(paddle.int32)
        indices_upper = paddle.ceil(index).astype(paddle.int32)
573 574 575 576 577 578 579 580 581 582 583 584
        tensor_upper = paddle.take_along_axis(
            sorted_tensor, indices_upper, axis=axis
        )
        tensor_below = paddle.take_along_axis(
            sorted_tensor, indices_below, axis=axis
        )
        weights = index - indices_below.astype('float64')
        out = paddle.lerp(
            tensor_below.astype('float64'),
            tensor_upper.astype('float64'),
            weights,
        )
585 586 587 588 589
        if not keepdim:
            out = paddle.squeeze(out, axis=axis)
        else:
            out = out.reshape(out_shape)
        outputs.append(out)
590 591 592

    if len(q) > 1:
        outputs = paddle.stack(outputs, 0)
593
    else:
594 595 596 597 598 599 600 601 602 603 604
        outputs = outputs[0]

    return outputs


def quantile(x, q, axis=None, keepdim=False):
    """
    Compute the quantile of the input along the specified axis.
    If any values in a reduced row are NaN, then the quantiles for that reduction will be NaN.

    Args:
605
        x (Tensor): The input Tensor, it's data type can be float32, float64, int32, int64.
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
        q (int|float|list): The q for calculate quantile, which should be in range [0, 1]. If q is a list,
            each q will be calculated and the first dimension of output is same to the number of ``q`` .
        axis (int|list, optional): The axis along which to calculate quantile. ``axis`` should be int or list of int.
            ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` is less than 0, it works the same way as :math:`axis + D`.
            If ``axis`` is a list, quantile is calculated over all elements of given axises.
            If ``axis`` is None, quantile is calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of quantile along ``axis`` of ``x``.
        In order to obtain higher precision, data type of results will be float64.

    Examples:
        .. code-block:: python

628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
            >>> import paddle

            >>> y = paddle.arange(0, 8 ,dtype="float32").reshape([4, 2])
            >>> print(y)
            Tensor(shape=[4, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0., 1.],
             [2., 3.],
             [4., 5.],
             [6., 7.]])

            >>> y1 = paddle.quantile(y, q=0.5, axis=[0, 1])
            >>> print(y1)
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=True,
            3.50000000)

            >>> y2 = paddle.quantile(y, q=0.5, axis=1)
            >>> print(y2)
            Tensor(shape=[4], dtype=float64, place=Place(cpu), stop_gradient=True,
            [0.50000000, 2.50000000, 4.50000000, 6.50000000])

            >>> y3 = paddle.quantile(y, q=[0.3, 0.5], axis=0)
            >>> print(y3)
            Tensor(shape=[2, 2], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[1.80000000, 2.80000000],
             [3.        , 4.        ]])

            >>> y[0,0] = float("nan")
            >>> y4 = paddle.quantile(y, q=0.8, axis=1, keepdim=True)
            >>> print(y4)
            Tensor(shape=[4, 1], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[nan       ],
             [2.80000000],
             [4.80000000],
             [6.80000000]])
662 663 664 665 666 667 668 669 670 671 672

    """
    return _compute_quantile(x, q, axis=axis, keepdim=keepdim, ignore_nan=False)


def nanquantile(x, q, axis=None, keepdim=False):
    """
    Compute the quantile of the input as if NaN values in input did not exist.
    If all values in a reduced row are NaN, then the quantiles for that reduction will be NaN.

    Args:
673
        x (Tensor): The input Tensor, it's data type can be float32, float64, int32, int64.
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
        q (int|float|list): The q for calculate quantile, which should be in range [0, 1]. If q is a list,
            each q will be calculated and the first dimension of output is same to the number of ``q`` .
        axis (int|list, optional): The axis along which to calculate quantile. ``axis`` should be int or list of int.
            ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` is less than 0, it works the same way as :math:`axis + D`.
            If ``axis`` is a list, quantile is calculated over all elements of given axises.
            If ``axis`` is None, quantile is calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of quantile along ``axis`` of ``x``.
        In order to obtain higher precision, data type of results will be float64.

    Examples:
        .. code-block:: python

696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
            >>> import paddle

            >>> x = paddle.to_tensor(
            ...     [[0, 1, 2, 3, 4],
            ...      [5, 6, 7, 8, 9]],
            ...     dtype="float32")
            >>> x[0,0] = float("nan")

            >>> y1 = paddle.nanquantile(x, q=0.5, axis=[0, 1])
            >>> print(y1)
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=True,
            5.)

            >>> y2 = paddle.nanquantile(x, q=0.5, axis=1)
            >>> print(y2)
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            [2.50000000, 7.        ])

            >>> y3 = paddle.nanquantile(x, q=[0.3, 0.5], axis=0)
            >>> print(y3)
            Tensor(shape=[2, 5], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[5.        , 2.50000000, 3.50000000, 4.50000000, 5.50000000],
             [5.        , 3.50000000, 4.50000000, 5.50000000, 6.50000000]])

            >>> y4 = paddle.nanquantile(x, q=0.8, axis=1, keepdim=True)
            >>> print(y4)
            Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[3.40000000],
             [8.20000000]])

            >>> nan = paddle.full(shape=[2, 3], fill_value=float("nan"))
            >>> y5 = paddle.nanquantile(nan, q=0.8, axis=1, keepdim=True)
            >>> print(y5)
            Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[nan],
             [nan]])
732 733 734

    """
    return _compute_quantile(x, q, axis=axis, keepdim=keepdim, ignore_nan=True)