device_worker.h 26.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

H
hutuxian 已提交
17
#include <atomic>
18 19 20 21
#include <fstream>
#include <map>
#include <memory>
#include <mutex>  // NOLINT
Z
zhang wenhui 已提交
22
#include <set>
23
#include <string>
X
xujiaqi01 已提交
24 25 26 27
#include <thread>         // NOLINT
#include <unordered_map>  // NOLINT
#include <unordered_set>  // NOLINT
#include <utility>        // NOLINT
28 29
#include <vector>

30 31 32 33
#if defined(PADDLE_WITH_PSCORE)
#include "paddle/fluid/distributed/ps/wrapper/fleet.h"
#endif

34
#include "paddle/fluid/framework/data_feed.h"
35
#include "paddle/fluid/framework/executor_gc_helper.h"
T
Thunderbrook 已提交
36
#include "paddle/fluid/framework/heter_util.h"
37 38 39 40 41 42 43 44 45
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/operators/reader/blocking_queue.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/timer.h"
46
#include "paddle/phi/backends/dynload/port.h"
47

W
wanghuancoder 已提交
48 49 50 51 52 53 54
namespace paddle {
namespace framework {
class ProgramDesc;
class Scope;
}  // namespace framework
}  // namespace paddle

55
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
56
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
H
hutuxian 已提交
57 58
#endif

59 60 61
namespace paddle {
namespace framework {

62
std::string PrintLodTensor(Tensor* tensor, int64_t start, int64_t end);
63 64 65
std::pair<int64_t, int64_t> GetTensorBound(LoDTensor* tensor, int index);
bool CheckValidOutput(LoDTensor* tensor, size_t batch_size);

66 67
class FleetWrapper;

T
Thunderbrook 已提交
68
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
69 70 71
class HeterWrapper;
#endif

72 73 74 75
class PullDenseWorker {
 public:
  virtual ~PullDenseWorker() {}
  virtual void Initialize(const TrainerDesc& param);
76 77
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  void AddStream(const gpuStream_t stream) { copy_streams_.push_back(stream); }
T
Thunderbrook 已提交
78
#endif
T
Thunderbrook 已提交
79

80 81
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) || \
    defined(PADDLE_WITH_XPU)
T
Thunderbrook 已提交
82 83 84 85 86 87
  void AddPlace(const paddle::platform::Place place) {
    places_.push_back(place);
  }

  void AddThreadScope(Scope* scope) { thread_scopes_.push_back(scope); }
#endif
88 89
  int Start();
  void Stop();
90
  void SetRootScope(Scope* scope) { root_scope_ = scope; }
91 92 93
  void IncreaseThreadVersion(int thread_id, uint64_t table_id);
  void ResetThreadVersion(uint64_t table_id);
  void Wait(std::vector<::std::future<int32_t>>* status_vec);
94
  void PullDense(bool force_update = false);
T
Thunderbrook 已提交
95
  void CreatePinVar();
T
Thunderbrook 已提交
96
  void MergeDenseParam();
97 98
  int GetThreadIdByScope(const Scope* scope);
  void SetThreadIdByScope(const Scope* scope, int tid);
99 100 101 102 103 104 105
  static std::shared_ptr<PullDenseWorker> GetInstance() {
    if (NULL == s_instance_) {
      s_instance_.reset(new paddle::framework::PullDenseWorker());
    }
    return s_instance_;
  }

106 107
  static std::shared_ptr<PullDenseWorker> s_instance_;

108
 private:
109
  PullDenseWorker() : root_scope_(NULL) {}
110 111 112 113
  void Run();
  bool CheckUpdateParam(uint64_t table_id);

 private:
114 115 116
#if defined(PADDLE_WITH_PSCORE)
  std::shared_ptr<paddle::distributed::FleetWrapper> fleet_ptr_;
#else
117
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
118 119
#endif

120
  PullDenseWorkerParameter param_;
H
heqiaozhi 已提交
121
  DownpourWorkerParameter dwp_param_;
122 123 124
  Scope* root_scope_;
  bool running_;

D
dongdaxiang 已提交
125 126 127 128 129
  static std::map<uint64_t, uint64_t> last_versions_;
  static std::map<uint64_t, uint64_t> current_version_;
  static std::mutex mutex_for_version_;
  static std::map<uint64_t, std::vector<uint64_t>> training_versions_;
  static std::map<uint64_t, std::vector<std::string>> dense_value_names_;
130 131 132 133 134 135 136 137 138 139 140 141 142 143

  std::thread t_;
  int thread_num_;
  int sleep_time_ms_;
  int threshold_;

  std::vector<::std::future<int32_t>> pull_dense_status_;
  uint32_t pull_dense_fail_times_ = 0;
  std::vector<float> base_norm_param_;
  std::vector<float> mean_;
  std::vector<float> scale_;
  float squared_sum_epsilon_ = 1e-4;
  std::mutex mutex_for_mean_scale_;
  float total_batch_num_ = 0;
144
  std::unordered_map<const Scope*, int> scope_to_thread_id_;
T
Thunderbrook 已提交
145

146 147
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  std::vector<gpuStream_t> copy_streams_;
T
Thunderbrook 已提交
148
#endif
T
Thunderbrook 已提交
149 150
  std::vector<paddle::platform::Place> places_;
  std::vector<Scope*> thread_scopes_;
151 152 153 154 155
};

// should incorporate different type of device
class DeviceWorker {
 public:
156 157 158 159
  DeviceWorker() {
    no_cvm_ = true;
    use_cvm_ = false;
  }
160 161
  virtual ~DeviceWorker() {}
  virtual void Initialize(const TrainerDesc& desc) = 0;
H
hutuxian 已提交
162
  virtual void InitRandomDumpConfig(const TrainerDesc& desc);
163 164
  virtual void SetDeviceIndex(int tid) = 0;
  virtual void TrainFiles() = 0;
D
dongdaxiang 已提交
165
  virtual void PrintFetchVars() = 0;
166 167 168 169 170
  virtual void TrainFilesWithProfiler() = 0;
  virtual void CreateDeviceResource(const ProgramDesc& main_prog) = 0;
  // will make this zero copy in the future
  virtual void BindingDataFeedMemory() = 0;
  virtual void SetRootScope(Scope* root_scope);
J
jiaqi 已提交
171
  virtual void SetDataFeed(DataFeed* data_feed);
T
Thunderbrook 已提交
172 173
  virtual void SetWorkerNum(int num) {}
  virtual void CacheProgram(const ProgramDesc& main_program) {}
T
Thunderbrook 已提交
174
  virtual void ProduceTasks() {}
T
Thunderbrook 已提交
175
  virtual void GetXpuOpIndex() {}
T
Thunderbrook 已提交
176
  virtual void Schedule(int taskid) {}
177 178 179
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  virtual void SetStream(const gpuStream_t stream) {}
  virtual void SetEvent(const gpuEvent_t event) {}
T
Thunderbrook 已提交
180
#endif
H
hutuxian 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
  virtual void SetNeedDumpField(bool need_dump_field) {
    need_dump_field_ = need_dump_field;
  }
  virtual void SetNeedDumpParam(bool need_dump_param) {
    need_dump_param_ = need_dump_param;
  }
  virtual void SetDumpFieldVector(const std::vector<std::string>& dump_fields) {
    dump_fields_ = &dump_fields;
  }
  virtual void SetDumpParamVector(const std::vector<std::string>& dump_param) {
    dump_param_ = &dump_param;
  }
  virtual void SetChannelWriter(ChannelObject<std::string>* queue) {
    writer_.Reset(queue);
  }
196 197 198
  virtual void SetPlace(const paddle::platform::Place& place) {
    place_ = place;
  }
199 200 201
  virtual void SetReaderPlace(const paddle::platform::Place& place) {
    device_reader_->SetPlace(place);
  }
202 203 204
  virtual void SetDeviceContext(platform::DeviceContext* dev_ctx) {
    dev_ctx_ = dev_ctx;
  }
205
  virtual Scope* GetThreadScope() { return thread_scope_; }
T
Thunderbrook 已提交
206
  DataFeed* device_reader_ = nullptr;
207 208

 protected:
H
hutuxian 已提交
209
  virtual void DumpParam(const Scope& scope, const int batch_id);
210 211
  virtual void DumpField(const Scope& scope,
                         int dump_mode,
H
hutuxian 已提交
212
                         int dump_interval = 10000);
J
jiaqi 已提交
213
  Scope* root_scope_ = nullptr;
214
  Scope* thread_scope_;
215
  paddle::platform::Place place_;
T
tangwei12 已提交
216
  int64_t batch_num_ = 0;
D
dongdaxiang 已提交
217
  FetchConfig fetch_config_;
218
  bool use_cvm_;
219
  bool no_cvm_;
220
  bool scale_sparse_gradient_with_batch_size_;
T
Thunderbrook 已提交
221
  TrainerDesc trainer_desc_;
H
hutuxian 已提交
222 223 224 225 226 227

  // dump params or grads for debug
  bool need_dump_param_;
  bool need_dump_field_;
  const std::vector<std::string>* dump_param_;
  const std::vector<std::string>* dump_fields_;
228
  std::vector<std::string> all_param_;
H
hutuxian 已提交
229 230 231 232

  int dump_mode_ = 0;
  int dump_interval_ = 10000;
  ChannelWriter<std::string> writer_;
233
  platform::DeviceContext* dev_ctx_ = nullptr;
234 235 236 237 238 239 240 241 242
};

class CPUWorkerBase : public DeviceWorker {
 public:
  CPUWorkerBase() {}
  virtual ~CPUWorkerBase() {}
  virtual void SetDeviceIndex(int tid) { thread_id_ = tid; }
  virtual void TrainFiles() = 0;
  virtual void TrainFilesWithProfiler() {}
D
dongdaxiang 已提交
243
  virtual void PrintFetchVars() {}
244 245 246 247 248 249 250 251 252
  virtual void CreateDeviceResource(const ProgramDesc& main_prog) {}

 protected:
  int thread_id_;
};

class HogwildWorker : public CPUWorkerBase {
 public:
  HogwildWorker() {}
253 254 255 256 257 258
  virtual ~HogwildWorker() {
    for (OperatorBase* op : ops_) {
      delete op;
    }
    std::vector<OperatorBase*>().swap(ops_);
  }
D
dongdaxiang 已提交
259
  virtual void Initialize(const TrainerDesc& desc);
260 261
  virtual void TrainFiles();
  virtual void TrainFilesWithProfiler();
D
dongdaxiang 已提交
262
  virtual void PrintFetchVars();
263 264
  virtual void CreateDeviceResource(const ProgramDesc& main_prog);
  virtual void BindingDataFeedMemory();
265 266
  template <typename T>
  void SetZero(LoDTensor* tensor, LoDTensor* root_tensor, int tensor_dim);
267 268 269 270

 protected:
  void CreateThreadOperators(const ProgramDesc& program);
  void CreateThreadScope(const ProgramDesc& program);
271

272 273
  std::vector<std::string> op_names_;
  std::vector<OperatorBase*> ops_;
274
  bool thread_barrier_;
275
  // Scope* thread_scope_;
276 277
  HogwildWorkerParameter param_;
  std::vector<std::string> skip_ops_;
278
  std::map<std::string, int> stat_var_name_map_;
279 280 281 282 283 284
};

class DownpourWorker : public HogwildWorker {
 public:
  DownpourWorker() {}
  virtual ~DownpourWorker() {}
285
  virtual void Initialize(const TrainerDesc& desc);
286
  virtual void TrainFiles();
287
  virtual void TrainFilesWithProfiler();
288 289 290 291 292 293 294

 protected:
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  void FillSparseValue(size_t table_id);
  void PushGradients();
  void CollectLabelInfo(size_t table_id);
295
  void AdjustInsWeight();
X
xujiaqi01 已提交
296 297 298
  void CopySparseTable();
  void CopyDenseTable();
  void CopyDenseVars();
299

300
  DownpourWorkerParameter param_;
301 302 303 304
  // copy table
  CopyTableConfig copy_table_config_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_sparse_tables_;
  std::unordered_map<uint64_t, std::unordered_set<uint64_t>> feasign_set_;
305 306
  // actually pushed feasign of each table
  std::map<uint64_t, std::vector<uint64_t>> sparse_push_keys_;
307
  std::map<uint64_t, std::vector<std::string>> sparse_key_names_;
308 309 310 311
  // feasign
  std::map<uint64_t, std::vector<uint64_t>> features_;
  // feasign embedding
  std::map<uint64_t, std::vector<std::vector<float>>> feature_values_;
312 313 314 315 316 317 318 319 320
  std::map<uint64_t, std::vector<std::string>> sparse_value_names_;
  // adjust ins weight
  AdjustInsWeightConfig adjust_ins_weight_config_;
  // check nan and inf during training
  std::vector<std::string> check_nan_var_names_;
  bool need_to_push_sparse_;
  // feasign stats
  std::map<uint64_t, std::vector<float>> feature_labels_;
  std::map<uint64_t, std::vector<std::string>> sparse_grad_names_;
321 322
  // feasign embedding gradient
  std::map<uint64_t, std::vector<std::vector<float>>> feature_grads_;
323 324 325 326 327 328
  std::vector<::std::future<int32_t>> push_sparse_status_;
  bool dump_slot_;
  bool need_to_push_dense_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  float scale_datanorm_;
  std::vector<::std::future<int32_t>> push_dense_status_;
329 330
  // skipped ops
  std::vector<std::string> skip_ops_;
331 332 333 334 335
  // just save the value in param_ for easy access
  std::map<uint64_t, std::string> label_var_name_;
  std::map<uint64_t, std::vector<std::string>> dense_value_names_;
  std::map<uint64_t, uint64_t> table_dependency_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_dense_tables_;
Z
zhang wenhui 已提交
336 337 338 339
  // multitask
  std::map<int32_t, uint64_t> cond2table_map_;
  std::set<uint64_t> condvalue_set_;
  bool flag_partial_push_;
340 341 342 343 344 345

 private:
  // std::vector<std::string> dump_param_;
  // just save the value in param_ for easy access
  // std::map<uint64_t, std::string> label_var_name_;
  // std::map<uint64_t, std::vector<std::string>> dense_value_names_;
346 347

  std::shared_ptr<PullDenseWorker> _pull_dense_worker;
348 349

  std::vector<float> nid_show_;
350 351 352 353
  // std::map<uint64_t, uint64_t> table_dependency_;
  // std::vector<std::pair<uint64_t, uint64_t>> copy_dense_tables_;
};

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
// Based on DownpourWorker,remove push pull code into operator
#if defined(PADDLE_WITH_PSCORE)
class DownpourLiteWorker : public HogwildWorker {
 public:
  DownpourLiteWorker() {}
  virtual ~DownpourLiteWorker() {}
  virtual void Initialize(const TrainerDesc& desc);
  virtual void TrainFiles();
  virtual void TrainFilesWithProfiler();

 protected:
  std::shared_ptr<paddle::distributed::FleetWrapper> fleet_ptr_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  void PushGradients();
  void CopySparseTable();
  void CopyDenseTable();
  void CopyDenseVars();

  DownpourWorkerParameter param_;
  // copy table
  CopyTableConfig copy_table_config_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_sparse_tables_;
  std::unordered_map<uint64_t, std::unordered_set<uint64_t>> feasign_set_;
  // actually pushed feasign of each table
  std::map<uint64_t, std::vector<uint64_t>> sparse_push_keys_;
  std::map<uint64_t, std::vector<std::string>> sparse_key_names_;
  // feasign
  std::map<uint64_t, std::vector<uint64_t>> features_;
  // feasign embedding
  std::map<uint64_t, std::vector<std::vector<float>>> feature_values_;
  std::map<uint64_t, std::vector<std::string>> sparse_value_names_;
  // adjust ins weight
  AdjustInsWeightConfig adjust_ins_weight_config_;
  // check nan and inf during training
  std::vector<std::string> check_nan_var_names_;
  bool need_to_push_sparse_;
  // feasign stats
  std::map<uint64_t, std::vector<float>> feature_labels_;
  std::map<uint64_t, std::vector<std::string>> sparse_grad_names_;
  // feasign embedding gradient
  std::map<uint64_t, std::vector<std::vector<float>>> feature_grads_;
  std::vector<::std::future<int32_t>> push_sparse_status_;
  bool dump_slot_;
  bool need_to_push_dense_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  float scale_datanorm_;
  std::vector<::std::future<int32_t>> push_dense_status_;
  // skipped ops
  std::vector<std::string> skip_ops_;
  // just save the value in param_ for easy access
  std::map<uint64_t, std::string> label_var_name_;
  std::map<uint64_t, std::vector<std::string>> dense_value_names_;
  std::map<uint64_t, uint64_t> table_dependency_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_dense_tables_;
  // multitask
  std::map<int32_t, uint64_t> cond2table_map_;
  std::set<uint64_t> condvalue_set_;
  bool flag_partial_push_;

 private:
  // std::vector<std::string> dump_param_;
  // just save the value in param_ for easy access
  // std::map<uint64_t, std::string> label_var_name_;
  // std::map<uint64_t, std::vector<std::string>> dense_value_names_;

  std::shared_ptr<PullDenseWorker> _pull_dense_worker;

  std::vector<float> nid_show_;
  // std::map<uint64_t, uint64_t> table_dependency_;
  // std::vector<std::pair<uint64_t, uint64_t>> copy_dense_tables_;
};
#endif

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
class DownpourWorkerOpt : public DownpourWorker {
 public:
  DownpourWorkerOpt() {}
  virtual ~DownpourWorkerOpt() {}
  virtual void CreateDeviceResource(const ProgramDesc& main_prog);
  virtual void Initialize(const TrainerDesc& desc);
  virtual void TrainFiles();

 protected:
  void CreateThreadOperatorsWithRerank(const ProgramDesc& program);
  std::vector<std::vector<OperatorBase*>> loss_ops_;
  std::vector<std::vector<std::string>> loss_op_names_;
  std::vector<std::string> loss_names_;
  std::string async_wait_name_;
  int async_index_ = -1;
  uint64_t async_tid_ = 0;
443 444
};

T
Thunderbrook 已提交
445
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
class HeterCpuWorker : public HogwildWorker {
 public:
  HeterCpuWorker() {}
  virtual ~HeterCpuWorker() {}
  virtual void Initialize(const TrainerDesc& desc);
  virtual void TrainFiles();
  virtual void TrainFilesWithProfiler();
  virtual void SetNeedDump(bool need_dump_field);
  virtual void SetChannelWriter(ChannelObject<std::string>* queue);
  virtual void SetWorkerNum(int num) { worker_num_ = num; }
  virtual void Schedule(int taskid);
  virtual void JumpContext(std::shared_ptr<HeterTask> task);
  virtual void CacheProgram(const ProgramDesc& main_program) {
    new (&program_) ProgramDesc(main_program);
  }
  virtual void GetXpuOpIndex();

 protected:
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  std::shared_ptr<paddle::framework::HeterWrapper> heter_ptr_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  void FillSparseValue(std::shared_ptr<HeterTask> task, size_t table_id);
  void PushGradients();
  void CollectLabelInfo(std::shared_ptr<HeterTask> task, size_t table_id);
  void AdjustInsWeight(std::shared_ptr<HeterTask> task);
  void DumpParam();
  void CopySparseTable();
  void CopyDenseTable();
  void CopyDenseVars();

 private:
  int mpi_rank_;
  int worker_num_;
  int xpu_begin_op_index_;
  int xpu_end_op_index_;
  ProgramDesc program_;
  HeterObjectPool<HeterTask> object_pool_;
  HeterList<int, std::shared_ptr<HeterTask>> run_queue_;
  HeterList<int, std::shared_ptr<HeterTask>> wait_queue_;
  bool need_dump_param_;
  std::vector<std::string> dump_param_;
  bool need_to_push_dense_;
  bool need_dump_field_;
  bool dump_slot_;
  bool need_to_push_sparse_;
  std::vector<std::string> dump_fields_;
  ChannelWriter<std::string> writer_;
  DownpourWorkerParameter param_;
  float scale_datanorm_;
  // just save the value in param_ for easy access
  std::map<uint64_t, std::string> label_var_name_;
  std::map<uint64_t, std::vector<std::string>> sparse_key_names_;
  std::map<uint64_t, std::vector<std::string>> sparse_value_names_;
  std::map<uint64_t, std::vector<std::string>> sparse_grad_names_;
  std::map<uint64_t, std::vector<std::string>> dense_value_names_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  platform::Place root_place_;
  // actually pushed feasign of each table
  std::map<uint64_t, std::vector<uint64_t>> sparse_push_keys_;

  // skipped ops
  std::vector<std::string> skip_ops_;

  std::vector<::std::future<int32_t>> push_sparse_status_;
  std::vector<::std::future<int32_t>> push_dense_status_;

  // adjust ins weight
  AdjustInsWeightConfig adjust_ins_weight_config_;
  std::vector<float> nid_show_;
  // check nan and inf during training
  std::vector<std::string> check_nan_var_names_;
  // copy table
  CopyTableConfig copy_table_config_;
  std::map<uint64_t, uint64_t> table_dependency_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_sparse_tables_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_dense_tables_;
  std::unordered_map<uint64_t, std::unordered_set<uint64_t>> feasign_set_;
};
#endif

F
Fan Zhang 已提交
526 527
#if (defined PADDLE_WITH_NCCL || defined PADDLE_WITH_RCCL || \
     defined PADDLE_WITH_XPU_BKCL) &&                        \
528
    (defined PADDLE_WITH_PSLIB)
T
Thunderbrook 已提交
529 530 531 532 533 534
class PSGPUWorker : public HogwildWorker {
 public:
  PSGPUWorker() {}
  virtual ~PSGPUWorker() {}
  virtual void Initialize(const TrainerDesc& desc);
  virtual void TrainFiles();
535
  virtual void TrainFilesWithProfiler();
T
Thunderbrook 已提交
536 537 538 539 540
  virtual void SetChannelWriter(ChannelObject<std::string>* queue);
  virtual void SetWorkerNum(int num) { worker_num_ = num; }
  virtual void CacheProgram(const ProgramDesc& main_program) {
    new (&program_) ProgramDesc(main_program);
  }
541
  void ProduceTasks() override;
F
Fan Zhang 已提交
542
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
543 544
  virtual void SetStream(const gpuStream_t stream) { copy_stream_ = stream; }
  virtual void SetEvent(const gpuEvent_t event) { event_ = event; }
F
Fan Zhang 已提交
545
#endif
T
Thunderbrook 已提交
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
  void ResetStat();

 protected:
  void PushGradients();
  void CopySparseTable();
  void CopyDenseTable();
  void CopyDenseVars();

 private:
  int mpi_rank_;
  std::mutex mutex_;
  int worker_num_;
  ProgramDesc program_;
  HeterObjectPool<HeterTask> object_pool_;
  bool need_to_push_dense_;
  bool dump_slot_;
  bool need_to_push_sparse_;
  DownpourWorkerParameter param_;
  float scale_datanorm_;
  // just save the value in param_ for easy access
  std::map<uint64_t, std::string> label_var_name_;
  std::map<uint64_t, std::vector<std::string>> sparse_key_names_;
T
Thunderbrook 已提交
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
  std::map<uint64_t, std::vector<std::string>> sparse_value_names_;
  std::map<uint64_t, std::vector<std::string>> sparse_grad_names_;
  std::map<uint64_t, std::vector<std::string>> dense_value_names_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  platform::Place root_place_;
  // actually pushed feasign of each table
  std::map<uint64_t, std::vector<uint64_t>> sparse_push_keys_;

  // skipped ops
  std::vector<std::string> skip_ops_;

  std::vector<::std::future<int32_t>> push_sparse_status_;
  std::vector<::std::future<int32_t>> push_dense_status_;

  // adjust ins weight
  AdjustInsWeightConfig adjust_ins_weight_config_;
  std::vector<float> nid_show_;
  // check nan and inf during training
  std::vector<std::string> check_nan_var_names_;
  // copy table
  CopyTableConfig copy_table_config_;
  std::map<uint64_t, uint64_t> table_dependency_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_sparse_tables_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_dense_tables_;
  std::unordered_map<uint64_t, std::unordered_set<uint64_t>> feasign_set_;
  paddle::framework::Channel<std::shared_ptr<HeterTask>> pull_queue_;
  paddle::framework::Channel<std::shared_ptr<HeterTask>> push_queue_;
F
Fan Zhang 已提交
595
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
596 597
  gpuEvent_t event_;
  gpuStream_t copy_stream_;
F
Fan Zhang 已提交
598
#endif
T
Thunderbrook 已提交
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
  int batch_cnt_{0};
  std::atomic<int> done_cnt_{0};

  double total_time_;
  double read_time_;
  double pack_time_;
  double pull_sparse_local_time_;
  double op_all_time_;
  double xpu_op_time_;
  double xpu_wait_time_;
  double cpu_op_time_;
  double collect_label_time_;
  double fill_sparse_time_;
  double push_sparse_time_;
  double gpu_2_cpu_time_;
  double cpu_2_gpu_time_;
  uint64_t total_inst_;
};
#endif

619
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
620
    defined(PADDLE_WITH_ASCEND_CL)
H
hutuxian 已提交
621 622
class SectionWorker : public DeviceWorker {
 public:
623
  SectionWorker() {}
H
hutuxian 已提交
624 625 626
  ~SectionWorker() override {}

  void Initialize(const TrainerDesc& desc) override;
627
  void PrepareUnusedVar();
H
hutuxian 已提交
628 629 630 631 632

  void BindingDataFeedMemory() override {}
  void CreateDeviceResource(const ProgramDesc& main_prog) override{};

  void TrainFiles() override;
633
  void TrainFilesWithProfiler() override{};
H
hutuxian 已提交
634 635 636 637 638

  void PrintFetchVars() override {}

  const platform::Place& place() const { return place_; }

L
lilong12 已提交
639
  void SetDeviceIndex(int tid) override {}
H
hutuxian 已提交
640
  void SetThreadIndex(int thread_id) { thread_id_ = thread_id; }
L
lilong12 已提交
641
  void SetMicrobatchNum(int num) { num_microbatches_ = num; }
642 643 644
  void SetPipelineStageNum(int num) { num_pipeline_stages_ = num; }
  void SetPipelineStage(int stage) { pipeline_stage_ = stage; }
  void SetScheduleMode(int mode) { schedule_mode_ = mode; }
L
lilong12 已提交
645 646
  void SetMicrobatchScopes(const std::vector<Scope*>& scope) {
    microbatch_scopes_ = scope;
H
hutuxian 已提交
647
  }
L
lilong12 已提交
648 649 650
  void SetMinibatchScope(const Scope* scope) { minibatch_scope_ = scope; }
  void SetSkipVars(const std::vector<std::string>& skip_vars) {
    skip_vars_ = skip_vars;
H
hutuxian 已提交
651
  }
652
  void RunBackward(
653 654
      int micro_id,
      std::unique_ptr<GarbageCollector>&,
655 656
      std::unordered_map<const OperatorBase*, std::vector<std::string>>&);
  void RunForward(
657 658
      int micro_id,
      std::unique_ptr<GarbageCollector>&,
659 660 661 662
      std::unordered_map<const OperatorBase*, std::vector<std::string>>&);
  void RunUpdate(
      std::unique_ptr<GarbageCollector>&,
      std::unordered_map<const OperatorBase*, std::vector<std::string>>&);
663 664
  void RunFThenB(std::unique_ptr<GarbageCollector>&);
  void Run1F1B(std::unique_ptr<GarbageCollector>&);
H
hutuxian 已提交
665 666 667 668

 protected:
  int section_id_;
  int thread_id_;
L
lilong12 已提交
669
  int num_microbatches_;
670 671 672
  int num_pipeline_stages_;
  int pipeline_stage_;
  int schedule_mode_;  // 0 for F-then-B and 1 for 1F1B
L
lilong12 已提交
673 674
  std::vector<Scope*> microbatch_scopes_;
  const Scope* minibatch_scope_;
H
hutuxian 已提交
675

676 677 678 679
  // skip&backward vars are only used in 1F1B
  std::vector<std::string> skip_vars_;
  std::vector<std::string> backward_send_vars_;

H
hutuxian 已提交
680
  std::vector<std::unique_ptr<OperatorBase>> ops_;
681 682 683 684
  std::vector<OperatorBase*> forward_and_lr_ops_;
  std::vector<OperatorBase*> forward_ops_;
  std::vector<OperatorBase*> backward_ops_;
  std::vector<OperatorBase*> optimizer_ops_;
L
lilong12 已提交
685
  std::shared_ptr<framework::ProgramDesc> program_;
686 687
  std::unordered_map<const OperatorBase*, std::vector<std::string>>
      unused_vars_;
L
lilong12 已提交
688
  static uint64_t batch_id_;
H
hutuxian 已提交
689 690 691 692

  platform::DeviceContext* dev_ctx_ = nullptr;
};
#endif
L
lilong12 已提交
693

694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
#if defined(PADDLE_WITH_PSCORE)
class HeterSectionWorker : public DeviceWorker {
 public:
  HeterSectionWorker() {}
  ~HeterSectionWorker() override {}

  void Initialize(const TrainerDesc& desc) override;
  void CreateDeviceResource(const ProgramDesc& main_prog) override{};

  void TrainFiles() override;
  void TrainFilesWithProfiler() override;

  void BindingDataFeedMemory() override {}
  void BindingDataFeedMemory(int micro_id);
  void PrintFetchVars() override;
  const platform::Place& place() const { return place_; }

  void SetDeviceIndex(int tid) override { thread_id_ = tid; }
  void SetThreadNum(int thread_num) { thread_num_ = thread_num; }
  void SetMicrobatchNum(int num) { num_microbatches_ = num; }
  void SetPipelineStageNum(int num) { num_pipeline_stages_ = num; }
  void SetPipelineStage(int stage) { pipeline_stage_ = stage; }
  std::shared_ptr<std::vector<Scope*>> GetMicrobatchScopes() {
    return microbatch_scopes_;
  }
719 720 721 722
  void SetMicrobatchScopes(
      std::shared_ptr<std::vector<Scope*>> microbatch_scopes) {
    microbatch_scopes_ = microbatch_scopes;
  }
723 724 725 726
  using SHARED_THREAD_QUEUE = std::shared_ptr<
      ::paddle::framework::BlockingQueue<std::pair<std::string, int>>>;

  SHARED_THREAD_QUEUE GetThreadQueue() { return thread_queue_; }
727 728 729
  void SetThreadQueue(SHARED_THREAD_QUEUE thread_queue) {
    thread_queue_ = thread_queue;
  }
730 731
  void CopyParameters(int microbatch_id,
                      const ProgramDesc& program,
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
                      const platform::Place& place);
  void SetMinibatchScope(Scope* scope) { minibatch_scope_ = scope; }
  void SetTrainerId(int trainer_id) { this->trainer_id_ = trainer_id; }
  void SetTrainers(int trainers) { this->trainers_ = trainers; }
  void CreateMicrobatchScopes();
  void RunForward(int micro_id);
  void RunBackward(int micro_id);
  void RunListen();
  void MiniBatchBarrier();
  void Run();
  void BatchPostProcess();
  void SetDebug(bool debug) { debug_ = debug; }
  Scope* GetThreadScope() override { return minibatch_scope_; }

  // multi-stream
  // #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  //  void SetStream(const gpuStream_t stream) override {}
  //  void SetEvent(const gpuEvent_t event) override {}
  // #endif

 protected:
  int trainer_id_;
  int trainers_;
  int thread_num_;
  int thread_id_;
  int num_microbatches_;
  int num_pipeline_stages_;
  int pipeline_stage_;
  bool epoch_finish_;

  std::shared_ptr<std::vector<Scope*>> microbatch_scopes_;
  Scope* minibatch_scope_;
  std::vector<int> micro_ids_{};
  std::unique_ptr<OperatorBase> listen_op_{nullptr};
  std::vector<std::unique_ptr<OperatorBase>> forward_ops_;
  std::vector<std::unique_ptr<OperatorBase>> backward_ops_;
  std::shared_ptr<framework::ProgramDesc> program_;
  std::shared_ptr<
      ::paddle::framework::BlockingQueue<std::pair<std::string, int>>>
      thread_queue_;
  static uint64_t batch_id_;
  uint64_t total_ins_num_ = 0;
  platform::DeviceContext* dev_ctx_ = nullptr;

  bool debug_ = false;
  std::vector<double> op_total_time_;
  std::vector<std::string> op_name_;
  platform::Timer timeline_;
  double total_time_ = 0.0;
  double read_time_ = 0.0;
};
#endif

785 786
}  // namespace framework
}  // namespace paddle