selected_rows.html 22.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Design Doc: Selected Rows &mdash; PaddlePaddle  文档</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="索引"
              href="../genindex.html"/>
        <link rel="search" title="搜索" href="../search.html"/>
    <link rel="top" title="PaddlePaddle  文档" href="../index.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a href="/">Home</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
        <ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_cn.html">新手入门</a></li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_cn.html">进阶指南</a></li>
<li class="toctree-l1"><a class="reference internal" href="../api/index_cn.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../faq/index_cn.html">FAQ</a></li>
88
<li class="toctree-l1"><a class="reference internal" href="../mobile/index_cn.html">MOBILE</a></li>
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_cn.html">新手入门</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../getstarted/build_and_install/index_cn.html">安装与编译</a><ul>
112 113
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/pip_install_cn.html">使用pip安装</a></li>
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/docker_install_cn.html">使用Docker安装运行</a></li>
114
<li class="toctree-l3"><a class="reference internal" href="../howto/dev/build_cn.html">用Docker编译和测试PaddlePaddle</a></li>
115
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/build_from_source_cn.html">从源码编译</a></li>
116 117 118 119 120 121 122 123 124 125 126 127
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../getstarted/concepts/use_concepts_cn.html">基本使用概念</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_cn.html">进阶指南</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/cmd_parameter/index_cn.html">设置命令行参数</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/use_case_cn.html">使用案例</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/arguments_cn.html">参数概述</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/detail_introduction_cn.html">细节描述</a></li>
</ul>
</li>
128 129 130 131 132 133 134 135
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/cluster/cluster_train_cn.html">PaddlePaddle分布式训练</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cluster/fabric_cn.html">fabric</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cluster/openmpi_cn.html">openmpi</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cluster/k8s_cn.html">kubernetes</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cluster/k8s_distributed_cn.html">kubernetes distributed</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cluster/k8s_aws_cn.html">kubernetes on AWS</a></li>
</ul>
</li>
136
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/contribute_to_paddle_cn.html">如何贡献代码</a></li>
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/write_docs_cn.html">如何贡献/修改文档</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/deep_model/rnn/index_cn.html">RNN相关模型</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/rnn_config_cn.html">RNN配置</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/recurrent_group_cn.html">Recurrent Group教程</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/optimization/gpu_profiling_cn.html">GPU性能分析与调优</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../api/index_cn.html">API</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/model_configs.html">模型配置</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/layer.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/evaluators.html">Evaluators</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
159 160 161 162 163 164
<li class="toctree-l2"><a class="reference internal" href="../api/v2/data.html">数据访问</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/data/data_reader.html">Data Reader Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/data/image.html">Image Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/data/dataset.html">Dataset</a></li>
</ul>
</li>
165
<li class="toctree-l2"><a class="reference internal" href="../api/v2/run_logic.html">训练与应用</a></li>
166 167 168 169 170 171 172 173 174 175 176 177 178
<li class="toctree-l2"><a class="reference internal" href="../api/v2/fluid.html">Fluid</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/layers.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/data_feeder.html">DataFeeder</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/executor.html">Executor</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/initializer.html">Initializer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/evaluator.html">Evaluator</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/nets.html">Nets</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/param_attr.html">ParamAttr</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/profiler.html">Profiler</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/regularizer.html">Regularizer</a></li>
</ul>
</li>
179 180 181 182 183 184 185 186 187 188
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../faq/index_cn.html">FAQ</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../faq/build_and_install/index_cn.html">编译安装与单元测试</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/model/index_cn.html">模型配置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/parameter/index_cn.html">参数设置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/local/index_cn.html">本地训练与预测</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/cluster/index_cn.html">集群训练与预测</a></li>
</ul>
</li>
189
<li class="toctree-l1"><a class="reference internal" href="../mobile/index_cn.html">MOBILE</a><ul>
190 191 192
<li class="toctree-l2"><a class="reference internal" href="../mobile/cross_compiling_for_android_cn.html">Android平台编译指南</a></li>
<li class="toctree-l2"><a class="reference internal" href="../mobile/cross_compiling_for_ios_cn.html">iOS平台编译指南</a></li>
<li class="toctree-l2"><a class="reference internal" href="../mobile/cross_compiling_for_raspberry_cn.html">Raspberry Pi平台编译指南</a></li>
193 194
</ul>
</li>
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
    <li>Design Doc: Selected Rows</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="design-doc-selected-rows">
<span id="design-doc-selected-rows"></span><h1>Design Doc: Selected Rows<a class="headerlink" href="#design-doc-selected-rows" title="永久链接至标题"></a></h1>
226
<p><code class="docutils literal"><span class="pre">SelectedRows</span></code> is a type of sparse tensor data type, which is designed to support <code class="docutils literal"><span class="pre">embedding</span></code> operators. The gradient of embedding table is a sparse tensor. Only a few rows are non-zero values in this tensor. It is straight-forward to represent a sparse tensor by the following sparse tensor data structure:</p>
227 228 229 230 231 232 233 234
<div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">SelectedRows</span> <span class="p">{</span>
 <span class="k">private</span><span class="o">:</span>
  <span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span> <span class="n">rows_</span><span class="p">;</span>
  <span class="n">Tensor</span> <span class="n">value_</span><span class="p">;</span>
  <span class="kt">int</span> <span class="n">height_</span><span class="p">;</span>
<span class="p">};</span>
</pre></div>
</div>
235
<p>The field <code class="docutils literal"><span class="pre">height_</span></code> is the first dimension of <code class="docutils literal"><span class="pre">SelectedRows</span></code>. The <code class="docutils literal"><span class="pre">rows</span></code> are the indices of the non-zero rows of <code class="docutils literal"><span class="pre">SelectedRows</span></code>. The <code class="docutils literal"><span class="pre">value_</span></code> field is an N-dim tensor of shape <code class="docutils literal"><span class="pre">[rows.size()</span> <span class="pre">/*</span> <span class="pre">NUM_ROWS</span> <span class="pre">*/,</span> <span class="pre">...]</span></code>, which supplies values for each row. The dimension of <code class="docutils literal"><span class="pre">SelectedRows</span></code> satisfies <code class="docutils literal"><span class="pre">[height_]</span> <span class="pre">+</span> <span class="pre">value_.shape[1:]</span></code>.</p>
236 237 238 239 240 241 242 243 244
<p>Suppose that a SelectedRows-typed variable <code class="docutils literal"><span class="pre">x</span></code> has many rows, but only two of them have values &#8211; row 73 is <code class="docutils literal"><span class="pre">[1,</span> <span class="pre">2]</span></code> and row 84 is <code class="docutils literal"><span class="pre">[3,</span> <span class="pre">4]</span></code>, the <code class="docutils literal"><span class="pre">SelectedRows</span></code> representation would be:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">SelectedRow</span> <span class="p">{</span>
  <span class="n">rows</span> <span class="o">=</span> <span class="p">[</span><span class="mi">73</span><span class="p">,</span> <span class="mi">84</span><span class="p">],</span>
  <span class="n">value</span> <span class="o">=</span> <span class="p">[[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span><span class="mi">4</span><span class="p">]]</span>
<span class="p">}</span>
</pre></div>
</div>
<div class="section" id="selectedrows-in-protobuf">
<span id="selectedrows-in-protobuf"></span><h2>SelectedRows in Protobuf<a class="headerlink" href="#selectedrows-in-protobuf" title="永久链接至标题"></a></h2>
245
<p><code class="docutils literal"><span class="pre">SelectedRows</span></code> is a type of <code class="docutils literal"><span class="pre">Variable</span></code>. <code class="docutils literal"><span class="pre">VarDesc</span></code> in protobuf should describe the <code class="docutils literal"><span class="pre">SelectedRows</span></code> information. Only the tensor dimension of a <code class="docutils literal"><span class="pre">SelectedRows</span></code> will be described in compile-time because the <code class="docutils literal"><span class="pre">rows_</span></code> and <code class="docutils literal"><span class="pre">value_</span></code> are dependent on the training data.
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
So we use <code class="docutils literal"><span class="pre">TensorDesc</span></code> to unify <code class="docutils literal"><span class="pre">data_type</span></code> and <code class="docutils literal"><span class="pre">dims</span></code>. A LodTensorDesc contains a <code class="docutils literal"><span class="pre">TensorDesc</span></code> and <code class="docutils literal"><span class="pre">lod_level</span></code>. The description of <code class="docutils literal"><span class="pre">SelectedRows</span></code> is a Tensor description.</p>
<div class="highlight-proto"><div class="highlight"><pre><span></span><span class="kd">message</span> <span class="nc">TensorDesc</span> <span class="p">{</span>
  <span class="k">required</span> <span class="n">DataType</span> <span class="na">data_type</span> <span class="o">=</span> <span class="mi">1</span><span class="p">;</span>
  <span class="k">repeated</span> <span class="kt">int64</span> <span class="na">dims</span> <span class="o">=</span> <span class="mi">2</span><span class="p">;</span> <span class="c1">// [UNK, 640, 480] is saved as [-1, 640, 480]</span>
<span class="p">}</span>

<span class="kd">message</span> <span class="nc">LodTensorDesc</span> <span class="p">{</span>
  <span class="k">required</span> <span class="n">TensorDesc</span> <span class="na">tensor</span> <span class="o">=</span> <span class="mi">1</span><span class="p">;</span>
  <span class="k">optional</span> <span class="n">int</span> <span class="na">lod_level</span> <span class="o">=</span> <span class="mi">2</span><span class="p">;</span>
<span class="p">}</span>

<span class="kd">message</span> <span class="nc">VarDesc</span> <span class="p">{</span>
  <span class="k">required</span> <span class="kt">string</span> <span class="na">name</span> <span class="o">=</span> <span class="mi">1</span><span class="p">;</span>
  <span class="kd">enum</span> <span class="n">VarType</span> <span class="p">{</span> 
    <span class="na">LOD_TENSOR</span> <span class="o">=</span> <span class="mi">0</span><span class="p">;</span>
    <span class="na">SELECTED_ROWS</span> <span class="o">=</span> <span class="mi">1</span><span class="p">;</span>
  <span class="p">}</span>
  <span class="k">required</span> <span class="n">VarType</span> <span class="na">type</span> <span class="o">=</span> <span class="mi">2</span><span class="p">;</span>
  <span class="k">optional</span> <span class="n">LodTensorDesc</span> <span class="na">lod_desc</span> <span class="o">=</span> <span class="mi">3</span><span class="p">;</span>
  <span class="k">optional</span> <span class="n">TensorDesc</span> <span class="na">selected_rows_desc</span> <span class="o">=</span> <span class="mi">4</span><span class="p">;</span>
  <span class="k">optional</span> <span class="kt">bool</span> <span class="na">persistable</span> <span class="o">=</span> <span class="mi">5</span> <span class="p">[</span> <span class="k">default</span> <span class="o">=</span> <span class="kc">false</span> <span class="p">];</span>
<span class="p">}</span>
</pre></div>
</div>
</div>
<div class="section" id="infershape-for-selected-rows">
<span id="infershape-for-selected-rows"></span><h2>InferShape for Selected Rows<a class="headerlink" href="#infershape-for-selected-rows" title="永久链接至标题"></a></h2>
273
<p>Just like <code class="docutils literal"><span class="pre">LoD</span></code> information, <code class="docutils literal"><span class="pre">InferShape</span></code> method will infer the output tensor type as well. The operator should decide whether its output is a <code class="docutils literal"><span class="pre">SelectedRows</span></code> or <code class="docutils literal"><span class="pre">Dense</span></code> tensor.</p>
274 275 276 277 278 279 280 281 282 283
<p>For example, the gradient operator of <code class="docutils literal"><span class="pre">TableLookup</span></code> will always generate <code class="docutils literal"><span class="pre">SelectedRows</span></code>. Its <code class="docutils literal"><span class="pre">InferShape</span></code> method should be like following</p>
<div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="kt">void</span> <span class="n">TableLookupGrad</span><span class="o">::</span><span class="n">InferShape</span><span class="p">(</span><span class="n">context</span><span class="p">)</span> <span class="p">{</span>
  <span class="p">...</span>
  <span class="n">context</span><span class="p">.</span><span class="n">SetDataType</span><span class="p">(</span><span class="s">&quot;Embedding.Grad&quot;</span><span class="p">,</span> <span class="n">kSelectedRows</span><span class="p">);</span>
<span class="p">}</span>
</pre></div>
</div>
</div>
<div class="section" id="sparse-operators">
<span id="sparse-operators"></span><h2>Sparse Operators<a class="headerlink" href="#sparse-operators" title="永久链接至标题"></a></h2>
284
<p>There are several operators that need to be written to support <code class="docutils literal"><span class="pre">SelectedRows</span></code>. These are:</p>
285
<ol class="simple">
286
<li>Operators which generate <code class="docutils literal"><span class="pre">SelectedRows</span></code> gradient. e.g. Gradient of <code class="docutils literal"><span class="pre">TableLookupOp</span></code>.</li>
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
<li>Optimize operators which support <code class="docutils literal"><span class="pre">SelectedRows</span></code> gradient. e.g. <code class="docutils literal"><span class="pre">SGD</span></code> or <code class="docutils literal"><span class="pre">AdaGrad</span></code> for <code class="docutils literal"><span class="pre">SelectedRows</span></code>. However, there should be only one <code class="docutils literal"><span class="pre">SGD</span></code> operator. <code class="docutils literal"><span class="pre">OpWithKernel::Run</span></code> should select a suitable kernel for both <code class="docutils literal"><span class="pre">dense</span></code> tensor or <code class="docutils literal"><span class="pre">SelectedRows</span></code>.</li>
</ol>
</div>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
        };
    </script>
      <script type="text/javascript" src="../_static/jquery.js"></script>
      <script type="text/javascript" src="../_static/underscore.js"></script>
      <script type="text/javascript" src="../_static/doctools.js"></script>
      <script type="text/javascript" src="../_static/translations.js"></script>
      <script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
       
  

  
  
    <script type="text/javascript" src="../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../_static/js/paddle_doc_init.js"></script> 

</body>
</html>