ir_pass_manager.cc 15.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/analysis/ir_pass_manager.h"
16

17
#include <map>
18
#include <memory>
19
#include <string>
20
#include <unordered_map>
21 22
#include <unordered_set>
#include <utility>
L
luotao1 已提交
23
#include <vector>
24

Y
Yan Chunwei 已提交
25
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
26 27
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/scope.h"
28
#include "paddle/fluid/inference/analysis/argument.h"
Y
Yan Chunwei 已提交
29
#include "paddle/fluid/string/pretty_log.h"
30
#include "paddle/phi/core/errors.h"
31 32 33 34

namespace paddle {
namespace inference {
namespace analysis {
Y
Yan Chunwei 已提交
35
using string::PrettyLog;
36
using string::PrettyLogEndl;
Y
Yan Chunwei 已提交
37
using string::Style;
38

39
IRPassManager::IRPassManager(Argument *argument) {
40
  disable_logs_ = argument->disable_logs();
41 42 43

  ARGUMENT_CHECK_FIELD(argument, ir_analysis_passes);
  CreatePasses(argument, argument->ir_analysis_passes());
44 45
}

46 47
void IRPassManager::CreatePasses(Argument *argument,
                                 const std::vector<std::string> &passes) {
48
  // For graph_viz_pass
49
  std::string pre_pass;
L
luotao1 已提交
50
  int pass_num = 0;
51

52
  for (const std::string &pass_name : passes) {
53
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_name);
54
    pass->Set("use_varseqlen", new bool(argument->tensorrt_use_varseqlen()));
55
    pass->Set("use_cutlass", new bool(argument->use_cutlass()));
56 57
    pass->Set("with_interleaved",
              new bool(argument->tensorrt_with_interleaved()));
58 59 60 61
    pass->Set("tensorrt_transformer_posid",
              new std::string(argument->tensorrt_transformer_posid()));
    pass->Set("tensorrt_transformer_maskid",
              new std::string(argument->tensorrt_transformer_maskid()));
62 63 64 65
    pass->Set("disable_logs", new bool(argument->disable_logs()));
    auto precision_mode = argument->tensorrt_precision_mode();
    bool enable_int8 = precision_mode == AnalysisConfig::Precision::kInt8;
    pass->Set("enable_int8", new bool(enable_int8));
W
Wilber 已提交
66 67 68 69 70 71 72 73 74
    pass->Set("max_input_shape",
              new std::map<std::string, std::vector<int>>(
                  argument->max_input_shape()));
    pass->Set("min_input_shape",
              new std::map<std::string, std::vector<int>>(
                  argument->min_input_shape()));
    pass->Set("optim_input_shape",
              new std::map<std::string, std::vector<int>>(
                  argument->optim_input_shape()));
75 76 77 78 79 80 81 82 83
    // Now, shape tensor value is not explicit set by user,
    // it is collected through API CollectShapeRangeInfo.
    pass->Set("max_shape_tensor",
              new std::map<std::string, std::vector<int>>());
    pass->Set("min_shape_tensor",
              new std::map<std::string, std::vector<int>>());
    pass->Set("optim_shape_tensor",
              new std::map<std::string, std::vector<int>>());

84 85 86 87
    // This gpu_device_id is used by some fp16 precision passes, so move it
    // here.
    pass->Set("gpu_device_id", new int(argument->gpu_device_id()));

88 89 90 91 92 93 94 95
    // tuned trt dynamic_shape
    pass->Set("trt_tuned_dynamic_shape",
              new bool(argument->tensorrt_tuned_dynamic_shape()));
    bool with_dynamic_shape = (argument->max_input_shape().size() > 0 &&
                               argument->min_input_shape().size() > 0 &&
                               argument->optim_input_shape().size() > 0) ||
                              argument->tensorrt_tuned_dynamic_shape();
    pass->Set("with_dynamic_shape", new bool(with_dynamic_shape));
96

97
    // Mixed precision related.
98 99 100
    pass->Set(
        "mixed_black_list",
        new std::unordered_set<std::string>(argument->mixed_black_list()));
101
    pass->Set("enable_gpu_mixed", new bool(argument->enable_gpu_mixed()));
102 103
    pass->Set("enable_custom_device_mixed",
              new bool(argument->enable_custom_device_mixed()));
104 105
    pass->Set("mixed_precision_mode",
              new int(argument->mixed_precision_mode()));
106
    pass->Set("model_precision", new int(argument->model_precision()));
107

Z
zhupengyang 已提交
108 109 110
    // "use_xpu" is used for passes in subgraphs.
    pass->Set("use_xpu", new bool(argument->use_xpu()));

111
    if (pass_name == "graph_viz_pass") {
112 113 114 115 116 117 118 119 120 121
      std::string optim_cache_dir = argument->optim_cache_dir();
      std::string dot_file_path;
      if (optim_cache_dir.empty()) {
        dot_file_path = std::to_string(pass_num) + "_ir_" +
                        (pre_pass.empty() ? "origin" : pre_pass) + ".dot";
      } else {
        dot_file_path = optim_cache_dir + "/" + std::to_string(pass_num) +
                        "_ir_" + (pre_pass.empty() ? "origin" : pre_pass) +
                        ".dot";
      }
122
      pass->Set("graph_viz_path", new std::string(std::move(dot_file_path)));
123
      pass->Set("optim_cache_dir", new std::string(std::move(optim_cache_dir)));
L
luotao1 已提交
124
      pass_num++;
125
    } else if (pass_name == "mkldnn_placement_pass") {
126 127 128
      pass->Set("mkldnn_enabled_op_types",
                new std::unordered_set<std::string>(
                    argument->mkldnn_enabled_op_types()));
129 130 131
    } else if (pass_name == "cudnn_placement_pass") {
      pass->Set("cudnn_enabled_op_types",
                new std::unordered_set<std::string>());
132
#ifdef PADDLE_WITH_MKLDNN
133 134 135 136 137 138 139
    } else if (pass_name == "cpu_quantize_placement_pass") {
      pass->Set("quantize_enabled_op_types",
                new std::unordered_set<std::string>(
                    argument->quantize_enabled_op_types()));
      pass->Set(
          "quantize_excluded_op_ids",
          new std::unordered_set<int>(argument->quantize_excluded_op_ids()));
140
    } else if (pass_name == "cpu_quantize_pass") {
B
baoachun 已提交
141
      if (argument->quantize_enabled_op_types().count("conv2d") ||
Z
zyfncg 已提交
142
          argument->quantize_enabled_op_types().count("fused_conv2d") ||
B
baoachun 已提交
143 144 145
          argument->quantize_enabled_op_types().count("depthwise_conv2d")) {
        pass->Set("data_layout", new std::string("NHWC"));
      }
146 147
      pass->Set("quant_var_scales",
                new VarQuantScale(argument->quant_var_scales()));
148 149 150 151
    } else if (pass_name == "cpu_bfloat16_placement_pass") {
      pass->Set("bfloat16_enabled_op_types",
                new std::unordered_set<std::string>(
                    argument->bfloat16_enabled_op_types()));
152
#endif
153
    } else if (pass_name == "tensorrt_subgraph_pass") {
154 155
      pass->Set("workspace_size",
                new int64_t(argument->tensorrt_workspace_size()));
156
      pass->Set("max_batch_size", new int(argument->tensorrt_max_batch_size()));
157 158
      pass->Set("min_subgraph_size",
                new int(argument->tensorrt_min_subgraph_size()));
N
nhzlx 已提交
159 160
      pass->Set("program",
                new framework::ProgramDesc *(&argument->main_program()));
161
      pass->Set("predictor_id", new int(argument->predictor_id()));
162 163
      bool use_calib_mode = argument->tensorrt_use_calib_mode();
      pass->Set("use_calib_mode", new bool(use_calib_mode));
Z
Zhaolong Xing 已提交
164 165
      pass->Set("precision_mode",
                new AnalysisConfig::Precision(precision_mode));
166 167
      pass->Set("context_memory_sharing",
                new bool(argument->trt_engine_memory_sharing()));
W
Wilber 已提交
168 169
      pass->Set("use_cuda_graph",
                new bool(argument->tensorrt_use_cuda_graph()));
170 171
      bool use_static_engine = argument->tensorrt_use_static_engine();
      bool model_from_memory = argument->model_from_memory();
172
      std::string optim_cache_dir = argument->optim_cache_dir();
173 174
      bool int8_valid = !(model_from_memory && optim_cache_dir.empty() &&
                          enable_int8 && use_calib_mode);
175
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
176 177
          int8_valid,
          true,
178 179 180 181
          platform::errors::PreconditionNotMet(
              "When you are in TRT INT8 mode, and load model from "
              "memory, you should set optim_cache_dir using "
              "config.SetOptimCacheDir()"));
182 183
      if (model_from_memory && use_static_engine) {
        PADDLE_ENFORCE_EQ(
W
Wilber 已提交
184 185
            optim_cache_dir.empty(),
            false,
186 187 188 189 190 191
            platform::errors::PreconditionNotMet(
                "When you are using Paddle-TRT, and using load model "
                "from memory, and also set the use_static to true. "
                "you must set optim_cache_dir using "
                "config.SetOptimCacheDir()."));
      }
N
nhzlx 已提交
192

193
      if (!optim_cache_dir.empty()) {
194 195
        if (!PathExists(optim_cache_dir)) {
          PADDLE_ENFORCE_NE(
W
Wilber 已提交
196 197
              MKDIR(optim_cache_dir.c_str()),
              -1,
198 199 200 201 202
              platform::errors::PreconditionNotMet(
                  "Can not create optimize cache directory: %s, Make sure you "
                  "have permission to write",
                  optim_cache_dir));
        }
203
        pass->Set("model_opt_cache_dir", new std::string(optim_cache_dir));
204
      } else if (use_static_engine || enable_int8 || with_dynamic_shape) {
205 206 207 208 209 210 211 212 213
        std::string model_opt_cache_dir =
            argument->Has("model_dir")
                ? argument->model_dir()
                : GetDirRoot(argument->model_program_path());
        pass->Set(
            "model_opt_cache_dir",
            new std::string(GetOrCreateModelOptCacheDir(model_opt_cache_dir)));
      }
      pass->Set("use_static_engine", new bool(use_static_engine));
214
      pass->Set("model_from_memory", new bool(argument->model_from_memory()));
215
      pass->Set("use_inspector", new bool(argument->tensorrt_use_inspector()));
216 217 218 219 220 221

      // tuned trt dynamic_shape
      pass->Set("trt_shape_range_info_path",
                new std::string(argument->tensorrt_shape_range_info_path()));
      pass->Set("trt_allow_build_at_runtime",
                new bool(argument->tensorrt_allow_build_at_runtime()));
W
Wilber 已提交
222 223 224
      pass->Set(
          "trt_disabled_ops",
          new std::vector<std::string>(argument->tensorrt_disabled_ops()));
225 226
      pass->Set("trt_use_dla", new bool(argument->tensorrt_use_dla()));
      pass->Set("trt_dla_core", new int(argument->tensorrt_dla_core()));
227

228
      // Setting the disable_trt_plugin_fp16 to true means that TRT plugin will
229
      // not run fp16.
230 231
      pass->Set("disable_trt_plugin_fp16",
                new bool(argument->disable_trt_plugin_fp16()));
D
denglin-github 已提交
232
    } else if (pass_name == "dlnne_subgraph_pass") {
D
denglin-github 已提交
233
      auto precision_mode = argument->dlnne_precision_mode();
D
denglin-github 已提交
234 235
      pass->Set("min_subgraph_size",
                new int(argument->dlnne_min_subgraph_size()));
D
denglin-github 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249
      pass->Set("max_batch_size", new int(argument->dlnne_max_batch_size()));
      pass->Set("use_static_batch",
                new bool(argument->dlnne_use_static_batch()));
      pass->Set("weight_share_mode",
                new std::string(argument->dlnne_weight_share_mode()));
      pass->Set("disable_nodes_by_outputs",
                new std::unordered_set<std::string>(
                    argument->dlnne_disable_nodes_by_outputs()));
      pass->Set("use_calib_mode", new bool(argument->dlnne_use_calib_mode()));
      pass->Set("precision_mode",
                new AnalysisConfig::Precision(precision_mode));
      pass->Set("input_shape_dict",
                new std::map<std::string, std::vector<int64_t>>(
                    argument->dlnne_input_shape_dict()));
D
denglin-github 已提交
250 251
      pass->Set("program",
                new framework::ProgramDesc *(&argument->main_program()));
252 253
    } else if (pass_name == "memory_optimize_pass") {
      pass->Set("root_predictor_id", new int(argument->root_predictor_id()));
254 255
    } else if (pass_name == "build_cinn_pass") {
      pass->Set("is_inference_stage", new bool(argument->use_cinn_compiler()));
256
    } else if (pass_name == "lite_subgraph_pass") {
257
      bool lite_enable_int8 =
石晓伟 已提交
258 259 260 261 262 263
          argument->lite_precision_mode() == AnalysisConfig::Precision::kInt8;
      pass->Set("program",
                new framework::ProgramDesc *(&argument->main_program()));
      pass->Set("lite_ops_filter",
                new std::vector<std::string>(argument->lite_ops_filter()));
      pass->Set("predictor_id", new int(argument->predictor_id()));
264 265
      pass->Erase("enable_int8");
      pass->Set("enable_int8", new bool(lite_enable_int8));
石晓伟 已提交
266
      pass->Set("use_gpu", new bool(argument->use_gpu()));
267 268 269
      pass->Set("zero_copy", new bool(argument->lite_zero_copy()));
      pass->Set("xpu_l3_workspace_size",
                new int(argument->xpu_l3_workspace_size()));
270
      pass->Set("use_opencl", new bool(argument->use_opencl()));
W
Wilber 已提交
271 272
      pass->Set("cpu_math_library_num_threads",
                new int(argument->cpu_math_library_num_threads()));
W
Wilber 已提交
273 274 275 276 277 278
      pass->Set("locked", new bool(argument->xpu_locked()));
      pass->Set("autotune", new bool(argument->xpu_autotune()));
      pass->Set("autotune_file",
                new std::string(argument->xpu_autotune_file()));
      pass->Set("precision", new std::string(argument->xpu_precision()));
      pass->Set("adaptive_seqlen", new bool(argument->xpu_adaptive_seqlen()));
279
      pass->Set("xpu_device_id", new int(argument->xpu_device_id()));
280 281
      pass->Set("enable_multi_stream",
                new bool(argument->xpu_enable_multi_stream()));
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
      // NNAdapter Related
      pass->Set("use_nnadapter", new bool(argument->use_nnadapter()));
      pass->Set("nnadapter_model_cache_dir",
                new std::string(argument->nnadapter_model_cache_dir()));
      pass->Set(
          "nnadapter_device_names",
          new std::vector<std::string>(argument->nnadapter_device_names()));
      pass->Set("nnadapter_context_properties",
                new std::string(argument->nnadapter_context_properties()));
      pass->Set("nnadapter_subgraph_partition_config_buffer",
                new std::string(
                    argument->nnadapter_subgraph_partition_config_buffer()));
      pass->Set("nnadapter_subgraph_partition_config_path",
                new std::string(
                    argument->nnadapter_subgraph_partition_config_path()));
      pass->Set("nnadapter_model_cache_buffer",
                new std::vector<std::vector<char>>(
                    argument->nnadapter_model_cache_buffer()));
      pass->Set("nnadapter_model_cache_token",
                new std::vector<std::string>(
                    argument->nnadapter_model_cache_token()));
303
    } else if (pass_name == "fc_fuse_pass") {
304
      pass->Set("use_gpu", new bool(argument->use_gpu()));
305 306 307 308 309 310 311 312
      bool fc_mkldnn_pass = 0;
      for (const std::string &pass_n : passes) {
        if (pass_n == "fc_mkldnn_pass") {
          fc_mkldnn_pass = 1;
        }
      }
      bool use_fc_padding = !fc_mkldnn_pass && argument->use_fc_padding();
      pass->Set("use_fc_padding", new bool(use_fc_padding));
Z
zhupengyang 已提交
313 314 315 316 317 318 319 320
    } else if (pass_name == "fused_multi_transformer_xpu_quant_pass") {
      auto op_types = argument->xpu_quant_post_dynamic_op_types();
      if (std::count(op_types.begin(),
                     op_types.end(),
                     "fused_multi_transformer") > 0) {
        pass->Set("quant_weight_bits",
                  new int(argument->xpu_quant_post_dynamic_weight_bits()));
      }
321
    }
322
    pre_pass = pass_name;
323 324

    passes_.emplace_back(std::move(pass));
325 326 327
  }
}

328
std::unique_ptr<Graph> IRPassManager::Apply(std::unique_ptr<Graph> graph) {
W
Wilber 已提交
329
  PADDLE_ENFORCE_NOT_NULL(
330
      graph.get(), platform::errors::InvalidArgument("Graph cannot be null."));
331 332
  // Apply all the passes
  for (const auto &pass : passes_) {
333
    if (pass->Type() != "graph_viz_pass" && !disable_logs_) {
Y
Yan Chunwei 已提交
334 335
      PrettyLogEndl(Style::H2(), "--- Running IR pass [%s]", pass->Type());
    }
336
    graph.reset(pass->Apply(graph.release()));
337
  }
G
Gabor Buella 已提交
338
  return graph;
339 340
}

341 342 343
}  // namespace analysis
}  // namespace inference
}  // namespace paddle