the_one_ps.py 55.6 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import warnings

import os
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.framework import Program
from paddle.fluid.compiler import CompiledProgram
from paddle.fluid.executor import Executor
from paddle.fluid.parallel_executor import ParallelExecutor
from paddle.fluid.framework import Variable, Parameter
from .runtime_base import RuntimeBase
from ..base.private_helper_function import wait_server_ready

28 29
__all__ = []

T
tangwei12 已提交
30 31 32 33 34

def conv_indent(indent):
    return "".join([" "] * indent)


T
tangwei12 已提交
35
PSERVER_SAVE_SUFFIX = ".shard"
36 37


T
Thunderbrook 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51
def parse_table_class(varname, o_main_program):
    from paddle.fluid.incubate.fleet.parameter_server.ir.public import is_distributed_sparse_op
    from paddle.fluid.incubate.fleet.parameter_server.ir.public import is_sparse_op

    for op in o_main_program.global_block().ops:
        if not is_distributed_sparse_op(op) and not is_sparse_op(op):
            continue

        param_name = op.input("W")[0]

        if param_name == varname and op.type == "lookup_table" or op.type == "lookup_table_v2":
            if op.has_attr('table_class') and op.attr("table_class") != "none":
                return op.attr('table_class')
            else:
52
                return "MemorySparseTable"
T
Thunderbrook 已提交
53 54


55 56 57 58 59 60 61
def get_default_accessor_proto(accessor, varname, o_main_program):
    embedding_dim = 0
    for var in o_main_program.list_vars():
        if var.name == varname:
            embedding_dim = var.shape[1]
            break

62 63 64 65 66 67 68 69
    if not accessor.HasField("accessor_class"):
        accessor.accessor_class = "CtrCommonAccessor"
    if not accessor.HasField("fea_dim"):
        accessor.fea_dim = embedding_dim + 2
    if not accessor.HasField("embedx_dim"):
        accessor.embedx_dim = embedding_dim - 1
    if not accessor.HasField("embedx_threshold"):
        accessor.embedx_threshold = 0
70 71

    ctr_accessor_param = accessor.ctr_accessor_param
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    if not ctr_accessor_param.HasField("nonclk_coeff"):
        ctr_accessor_param.nonclk_coeff = 0.1
    if not ctr_accessor_param.HasField("click_coeff"):
        ctr_accessor_param.click_coeff = 1.0
    if not ctr_accessor_param.HasField("base_threshold"):
        ctr_accessor_param.base_threshold = 0
    if not ctr_accessor_param.HasField("delta_threshold"):
        ctr_accessor_param.delta_threshold = 0
    if not ctr_accessor_param.HasField("delta_keep_days"):
        ctr_accessor_param.delta_keep_days = 16
    if not ctr_accessor_param.HasField("show_click_decay_rate"):
        ctr_accessor_param.show_click_decay_rate = 1
    if not ctr_accessor_param.HasField("delete_threshold"):
        ctr_accessor_param.delete_threshold = 0
    if not ctr_accessor_param.HasField("delete_after_unseen_days"):
        ctr_accessor_param.delete_after_unseen_days = 30
    if not ctr_accessor_param.HasField("ssd_unseenday_threshold"):
        ctr_accessor_param.ssd_unseenday_threshold = 1

    for sgd_param in [accessor.embed_sgd_param, accessor.embedx_sgd_param]:
        if not sgd_param.HasField("name"):
            sgd_param.name = "SparseAdaGradSGDRule"
        if sgd_param.name == "SparseAdaGradSGDRule" or sgd_param.name == "StdAdaGradSGDRule":
            if not sgd_param.adagrad.HasField("learning_rate"):
                sgd_param.adagrad.learning_rate = 0.05
            if not sgd_param.adagrad.HasField("initial_g2sum"):
                sgd_param.adagrad.initial_g2sum = 3.0
            if not sgd_param.adagrad.HasField("initial_range"):
                sgd_param.adagrad.initial_range = 0.0001
            if len(sgd_param.adagrad.weight_bounds) == 0:
                sgd_param.adagrad.weight_bounds.extend([-10.0, 10.0])
        if sgd_param.name == "SparseNaiveSGDRule":
            if not sgd_param.naive.HasField("learning_rate"):
                sgd_param.naive.learning_rate = 0.05
            if not sgd_param.naive.HasField("initial_range"):
                sgd_param.naive.initial_range = 0.0001
            if len(sgd_param.naive.weight_bounds) == 0:
                sgd_param.naive.weight_bounds.extend([-10.0, 10.0])
        if sgd_param.name == "SparseAdamSGDRule":
            if not sgd_param.adam.HasField("learning_rate"):
                sgd_param.adam.learning_rate = 0.001
            if not sgd_param.adam.HasField("initial_range"):
                sgd_param.adam.initial_range = 0.0001
            if not sgd_param.adam.HasField("beta1_decay_rate"):
                sgd_param.adam.beta1_decay_rate = 0.9
            if not sgd_param.adam.HasField("beta2_decay_rate"):
                sgd_param.adam.beta2_decay_rate = 0.999
            if not sgd_param.adam.HasField("ada_epsilon"):
                sgd_param.adam.ada_epsilon = 1e-08
            if len(sgd_param.adam.weight_bounds) == 0:
                sgd_param.adam.weight_bounds.extend([-10.0, 10.0])
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142


def check_embedding_dim(accessor, varname, o_main_program):
    embedding_dim = 0
    for var in o_main_program.list_vars():
        if var.name == varname:
            embedding_dim = var.shape[1]
            break
    fea_dim = accessor.fea_dim
    if fea_dim != embedding_dim + 2:
        raise ValueError(
            "The fea_dim is wrong, it will be sparse_embedding_dim + 2: {}, but got {}".
            format(embedding_dim + 2, fea_dim))
    embedx_dim = accessor.embedx_dim
    if embedx_dim != embedding_dim - 1:
        raise ValueError(
            "The embedx_dim is wrong, it will be sparse_embedding_dim - 1: {}, but got {}".
            format(embedding_dim - 1, embedx_dim))


T
tangwei12 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
class Accessor:
    def __init__(self):
        self.accessor_class = ""
        self.optimizer = None
        self.feature_dim = -1
        self.embedding_dim = -1
        self.optimizer = None

    def to_string(self, indent):
        accessor_str = "{}accessor {{{}\n{}}}"
        attrs = ""
        attrs += "accessor_class: \"{}\" ".format(self.accessor_class)
        attrs += "fea_dim: {} ".format(self.feature_dim)
        attrs += "embedx_dim: {} ".format(self.embedding_dim)
        attrs += "\n"
        if self.optimizer is not None:
            attrs += self.optimizer.to_string(indent)
        return accessor_str.format(
            conv_indent(indent), attrs, conv_indent(indent))


class CommonAccessor:
    def __init__(self):
        self.accessor_class = ""
        self.table_name = None
T
tangwei12 已提交
168
        self.entry = None
T
tangwei12 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
        self.attrs = []
        self.params = []
        self.dims = []
        self.trainer_num = 0
        self.sync = "false"
        self.initializers = []
        self.opt_input_map = {}
        self.opt_attr_map = {}
        self.opt_init_map = {}
        self.define_optimize_map()

    def define_optimize_map(self):
        opt_input_map = {}
        opt_input_map["sgd"] = [("Param", None), ("LearningRate", 1)]
        opt_input_map["adam"] = [("Param", None), ("Moment1", None),
                                 ("Moment2", None), ("Beta1Pow", 1),
                                 ("Beta2Pow", 1), ("LearningRate", 1)]
186 187 188 189 190
        opt_input_map["adam_d2sum"] = [
            ("Param", None), ("D2Sum", None), ("G2Sum", None), ("Moment", None),
            ("MomentDecayRate", 1), ("AdaDecayRate", 1), ("AdaEpsilon", 1),
            ("LearningRate", 1)
        ]
T
tangwei12 已提交
191
        opt_input_map["sum"] = [("Param", None)]
T
Thunderbrook 已提交
192 193
        opt_input_map["naive_adagrad"] = [("Param", None), ("G2Sum", 1),
                                          ("LearningRate", 1)]
T
tangwei12 已提交
194 195 196 197

        opt_attr_map = {}
        opt_attr_map["sgd"] = []
        opt_attr_map["sum"] = []
T
Thunderbrook 已提交
198
        opt_attr_map["naive_adagrad"] = []
T
tangwei12 已提交
199 200
        opt_attr_map["adam"] = [("beta1", "f"), ("beta2", "f"),
                                ("epsilon", "f")]
201 202
        opt_attr_map["adam_d2sum"] = [("beta1", "f"), ("beta2", "f"),
                                      ("epsilon", "f")]
T
tangwei12 已提交
203 204 205 206 207 208 209 210 211 212 213

        opt_init_map = {}
        opt_init_map["gaussian_random"] = ["seed", "mean", "std"]
        opt_init_map["fill_constant"] = ["value"]
        opt_init_map["uniform_random"] = ["seed", "min", "max"]
        opt_init_map["truncated_gaussian_random"] = ["seed", "mean", "std"]

        self.opt_attr_map = opt_attr_map
        self.opt_input_map = opt_input_map
        self.opt_init_map = opt_init_map

T
tangwei12 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
    def parse_entry(self, varname, o_main_program):
        from paddle.fluid.incubate.fleet.parameter_server.ir.public import is_distributed_sparse_op
        from paddle.fluid.incubate.fleet.parameter_server.ir.public import is_sparse_op

        for op in o_main_program.global_block().ops:
            if not is_distributed_sparse_op(op) and not is_sparse_op(op):
                continue

            param_name = op.input("W")[0]

            if param_name == varname and op.type == "lookup_table":
                self.entry = op.attr('entry')
                break

            if param_name == varname and op.type == "lookup_table_v2":
                self.entry = "none"
                break

T
tangwei12 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
    def get_shard(self, total_dim, shard_num, pserver_id):
        # remainder = total_dim % shard_num
        blocksize = int(total_dim / shard_num + 1)

        if blocksize * (pserver_id + 1) <= total_dim:
            return blocksize
        else:
            if blocksize * pserver_id < total_dim:
                return total_dim - blocksize * pserver_id
            else:
                return 0

    def get_initializer_attr(self, value_name, o_startup_program):
        l_in = "&"
        attr_str = ""

        origin_var_name = value_name
        for op in o_startup_program.global_block().ops:
            if op.type in self.opt_init_map.keys(
            ) and origin_var_name == op.output("Out")[0]:
                init_attr = [op.type]
                for attr in self.opt_init_map[op.type]:
                    init_attr.append(str(op.attr(attr)))
                attr_str = l_in.join(init_attr)
                break
        return attr_str

    def parse_by_optimizer(self, grad_name, is_sparse, total_dims,
260
                           compiled_strategy, adam_d2sum):
T
tangwei12 已提交
261 262 263 264 265 266 267 268 269
        from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_optimize_ops
        param_name = compiled_strategy.grad_name_to_param_name[grad_name]
        main_program, startup_program = compiled_strategy.get_origin_programs()
        pserver_id = compiled_strategy.get_role_id()
        pserver_num = len(compiled_strategy.get_ps_endpoints())
        optimizer_ops = _get_optimize_ops(main_program)
        oop = None

        for op in optimizer_ops:
270 271
            if ("Param" in op.input_names) and (
                    op.input("Param")[0] == param_name):
T
tangwei12 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284
                oop = op
                break

        if oop is None:
            raise ValueError("can not find optimizer for {}".format(grad_name))

        params = []
        dims = []
        attrs = []
        initializers = []

        self.trainer_num = compiled_strategy.get_trainers()

285 286 287 288
        if oop.type != 'adam' and adam_d2sum == True:
            print('optimization algorithm is not adam, set adam_d2sum False')
            adam_d2sum = False
        print("adam_d2sum:", adam_d2sum)
T
tangwei12 已提交
289 290 291 292
        if compiled_strategy.is_geo_mode():
            param_varnames = self.opt_input_map["sum"]
            attr_varnames = self.opt_attr_map["sum"]
            self.accessor_class = "sum"
T
Thunderbrook 已提交
293 294 295 296
        elif compiled_strategy.use_ps_gpu and is_sparse:
            param_varnames = self.opt_input_map["naive_adagrad"]
            attr_varnames = self.opt_attr_map["naive_adagrad"]
            self.accessor_class = "sgd"
297 298 299 300
        elif adam_d2sum:
            param_varnames = self.opt_input_map["adam_d2sum"]
            attr_varnames = self.opt_attr_map["adam_d2sum"]
            self.accessor_class = "adam_d2sum"
T
tangwei12 已提交
301 302 303 304 305 306 307
        else:
            param_varnames = self.opt_input_map[oop.type]
            attr_varnames = self.opt_attr_map[oop.type]
            self.accessor_class = oop.type

        for (formal_name, shape) in param_varnames:
            params.append(formal_name)
308 309
            if self.accessor_class == "adam_d2sum":
                #for dims
T
Thunderbrook 已提交
310 311 312 313 314 315 316 317
                if shape is None:
                    if is_sparse:
                        shape = total_dims
                    else:
                        shape = self.get_shard(total_dims, pserver_num,
                                               pserver_id)
                dims.append(shape)

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
                #for initializers
                if formal_name == "Param" or formal_name == "LearningRate":
                    param = main_program.global_block().vars[oop.input(
                        formal_name)[0]]
                    #TODO: for dense learning_rate, can be different from sparse lr
                    if formal_name == "LearningRate" and param.name != "learning_rate_0":
                        warnings.warn("will support decay soon")
                        param = main_program.global_block().vars[
                            "learning_rate_0"]

                    initializer = self.get_initializer_attr(param.name,
                                                            startup_program)
                elif formal_name == "MomentDecayRate":
                    initializer = "fill_constant&0.99"
                elif formal_name == "AdaDecayRate":
                    initializer = "fill_constant&0.9999"
                elif formal_name == "AdaEpsilon":
                    initializer = "fill_constant&1.0e-8"
                else:
                    initializer = "fill_constant&0"
T
Thunderbrook 已提交
338
                initializers.append(initializer)
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
            else:
                if formal_name == "G2Sum":
                    dims.append(1)
                    initializer = "fill_constant&0"
                    initializers.append(initializer)
                else:
                    param = main_program.global_block().vars[oop.input(
                        formal_name)[0]]
                    if formal_name == "LearningRate" and param.name != "learning_rate_0":
                        warnings.warn("will support decay soon")
                        param = main_program.global_block().vars[
                            "learning_rate_0"]

                    if shape is None:
                        if is_sparse:
                            shape = total_dims
                        else:
                            shape = self.get_shard(total_dims, pserver_num,
                                                   pserver_id)
                    dims.append(shape)

                    initializer = self.get_initializer_attr(param.name,
                                                            startup_program)
                    initializers.append(initializer)
T
tangwei12 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380

        for (attr_varname, type_) in attr_varnames:
            value = oop.attr(attr_varname)
            attrs.append("&".join([attr_varname, type_, str(value)]))

        self.params = params
        self.dims = dims
        self.initializers = initializers
        self.attrs = attrs

    def to_string(self, indent):
        accessor_str = "{}common {{{}\n{}}}"
        attrs = ""
        attrs += "name: \"{}\" ".format(self.accessor_class)

        if self.table_name:
            attrs += "table_name: \"{}\" ".format(self.table_name)

T
tangwei12 已提交
381 382
        if self.entry:
            attrs += "entry: \"{}\" ".format(self.entry)
T
tangwei12 已提交
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
        attrs += "trainer_num: {} ".format(self.trainer_num)
        attrs += "sync: {} ".format(self.sync)

        for param in self.params:
            attrs += "params: \"{}\" ".format(param)

        for dim in self.dims:
            attrs += "dims: {} ".format(dim)

        for initializer in self.initializers:
            attrs += "initializers: \"{}\" ".format(initializer)

        attrs += "\n"
        return accessor_str.format(
            conv_indent(indent), attrs, conv_indent(indent))


400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
class Tensor:
    def __init__(self):
        self.main_program_id = None
        self.startup_program_id = None
        self.feed_var_name = None
        self.fetch_var_name = None
        self.tensor_table_class = False

    def to_string(self, indent):
        program_str = "{}tensor {{{}\n{}}}"
        attrs = ""
        attrs += "feed_var_name: \"{}\" ".format(str(self.feed_var_name))
        attrs += "fetch_var_name: \"{}\" ".format(str(self.fetch_var_name))
        attrs += "startup_program_id: {} ".format(str(self.startup_program_id))
        attrs += "main_program_id: {} ".format(str(self.main_program_id))
        attrs += "tensor_table_class: \"{}\" ".format(
            str(self.tensor_table_class))
        attrs += "\n"
        return program_str.format(
            conv_indent(indent), attrs, conv_indent(indent))


T
tangwei12 已提交
422 423 424 425 426 427 428 429
class Table:
    def __init__(self):
        self.id = -1
        self.table_class = None
        self.shard_num = -1
        self.type = None
        self.accessor = None
        self.common = None
430
        self.tensor = None
431
        self.accessor_proto = None
T
tangwei12 已提交
432 433

    def to_string(self, indent):
434 435 436 437 438
        # if self.id == 1:
        #     proto_txt = ''
        #     with open('./sparse_table.prototxt') as f:
        #         proto_txt = f.read()
        #     return proto_txt
T
tangwei12 已提交
439 440 441 442 443 444 445 446 447 448
        table_str = "{}downpour_table_param {{{}\n{}}}"

        attrs = ""
        attrs += "table_id: {} ".format(self.id)
        attrs += "table_class: \"{}\" ".format(self.table_class)
        attrs += "shard_num: {} ".format(self.shard_num)
        attrs += "type: {}".format(self.type)
        attrs += "\n"
        indent += 2

449 450 451 452 453 454 455 456
        if self.accessor_proto is not None:
            accessor_str = "{}accessor {{{}\n{}}}"
            accessor_str = accessor_str.format(
                conv_indent(indent), self.accessor_proto, conv_indent(indent))
            attrs += accessor_str + "\n"
            return table_str.format(
                conv_indent(indent), attrs, conv_indent(indent))

T
tangwei12 已提交
457 458 459 460
        if self.accessor is not None:
            attrs += self.accessor.to_string(indent)
            attrs += "\n"

461 462 463 464
        if self.tensor is not None:
            attrs += self.tensor.to_string(indent)
            attrs += "\n"

T
tangwei12 已提交
465 466 467 468 469 470 471 472 473 474 475
        if self.common is not None:
            attrs += self.common.to_string(indent)
            attrs += "\n"

        return table_str.format(conv_indent(indent), attrs, conv_indent(indent))


class Service:
    def __init__(self):
        self.server_class = "BrpcPsServer"
        self.client_class = "BrpcPsClient"
T
tangwei12 已提交
476
        self.service_class = "BrpcPsService"
T
tangwei12 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
        self.start_server_port = 0
        self.server_thread_num = 12

    def to_string(self, indent):
        service_str = "{}service_param {{{}\n{}}}"

        attrs = ""
        attrs += "server_class: \"{}\" ".format(self.server_class)
        attrs += "client_class: \"{}\" ".format(self.client_class)
        attrs += "service_class: \"{}\" ".format(self.service_class)
        attrs += "start_server_port: {} ".format(self.start_server_port)
        attrs += "server_thread_num: {} ".format(self.server_thread_num)

        return service_str.format(
            conv_indent(indent), attrs, conv_indent(indent))


class DownpourServer:
    def __init__(self):
        self.service = None
        self.tables = []

    def set_service_param(self, service):
        self.service = service

    def append_tables(self, table):
        if not isinstance(table, Table):
            raise ValueError("only support instance Table")
        self.tables.append(table)

    def to_string(self, indent):
        server_str = "{}downpour_server_param {{{}\n{}}}"

        table_strs = ""
        indent += 2

        table_strs += "\n"
        table_strs += self.service.to_string(indent)

        for table in self.tables:
            table_strs += "\n"
            table_strs += table.to_string(indent)
        return server_str.format(
            conv_indent(indent), table_strs, conv_indent(indent))


class Server:
    def __init__(self):
        self.servers = []

    def add_server(self, server):
        if not isinstance(server, DownpourServer):
            raise ValueError("only support instance DownpourServer")
        self.servers.append(server)

    def __str__(self):
        server_str = "server_param {{{}\n}}"
        indent = 2
        servers_str = ""
        for server in self.servers:
            servers_str += "\n"
            servers_str += server.to_string(indent)

        return server_str.format(servers_str)


class DownpourWorker:
    def __init__(self):
        self.tables = []

    def append_tables(self, table):
        if not isinstance(table, Table):
            raise ValueError("only support instance Table")
        self.tables.append(table)

    def to_string(self, indent):
        worker_str = "{}downpour_worker_param {{{}\n{}}}"
        table_strs = ""
        indent += 2
        for table in self.tables:
            table_strs += "\n"
            table_strs += table.to_string(indent)

        return worker_str.format(
            conv_indent(indent), table_strs, conv_indent(indent))


class Worker:
    def __init__(self):
        self.workers = []

    def add_worker(self, worker):
        if not isinstance(worker, DownpourWorker):
            raise ValueError("only support instance DownpourWorker")
        self.workers.append(worker)

    def __str__(self):
        worker_str = "worker_param {{{}\n}}"
        indent = 2
        workers_str = ""
        for worker in self.workers:
            workers_str += "\n"
            workers_str += worker.to_string(indent)

        return worker_str.format(workers_str)


584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
class fsClient:
    def __init__(self, proto):
        self.proto = proto
        self.uri = proto.uri
        self.user = proto.user
        self.passwd = proto.passwd
        self.hadoop_bin = proto.hadoop_bin

    def to_string(self):
        from google.protobuf import text_format
        proto_txt = text_format.MessageToString(self.proto)
        if proto_txt:
            fs_str = "fs_client_param {{\n{}}}"
            return fs_str.format(proto_txt)
        else:
            return ""


T
tangwei12 已提交
602 603 604 605 606 607
class TheOnePSRuntime(RuntimeBase):
    def __init__(self):
        super(TheOnePSRuntime, self).__init__()
        self._communicator = None
        self._server = None
        self._worker = fluid.core.DistFleetWrapper()
608
        self._server_sub_program = []
T
tangwei12 已提交
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
        self._heter_client = None

    def _set_basic_info(self, context):
        self.context = context
        self.role_maker = context["role_maker"]
        self.origin_main_program = context["origin_main_program"]
        self.origin_startup_program = context["origin_startup_program"]
        self.async_strategy = self._get_distributed_strategy()
        self.compiled_strategy = self.build_compiled_startegy()

    def _get_distributed_strategy(self):
        strategy = None

        from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import \
            StrategyFactory

        dist_strategy = self.context["valid_strategy"]
        k_steps = dist_strategy.a_sync_configs["k_steps"]

        if not dist_strategy.a_sync and k_steps == 0:
            strategy = StrategyFactory.create_sync_strategy()

        if dist_strategy.a_sync and k_steps == 0:
            strategy = StrategyFactory.create_async_strategy()

        if dist_strategy.a_sync and k_steps > 0:
            strategy = StrategyFactory.create_geo_strategy(k_steps)

        if not strategy:
            raise ValueError("k_steps must be invalid value, please check")

T
Thunderbrook 已提交
640 641
        if dist_strategy.a_sync_configs["use_ps_gpu"]:
            strategy.use_ps_gpu = True
T
tangwei12 已提交
642 643 644 645 646 647 648 649
        return strategy

    def build_compiled_startegy(self):
        from paddle.fluid.incubate.fleet.parameter_server.ir.public import CompileTimeStrategy

        compiled_config = CompileTimeStrategy(
            self.origin_main_program, self.origin_main_program,
            self.async_strategy, self.role_maker)
T
Thunderbrook 已提交
650 651
        if self.async_strategy.use_ps_gpu:
            compiled_config.use_ps_gpu = True
T
tangwei12 已提交
652 653 654 655 656 657 658 659 660 661
        return compiled_config

    def _init_worker(self):
        from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import \
            SyncStrategy, GeoStrategy

        is_sync = self.compiled_strategy.is_sync_mode()
        worker = self._get_fleet_proto(is_server=False, is_sync=is_sync)
        server = self._get_fleet_proto(is_server=True, is_sync=is_sync)

T
Thunderbrook 已提交
662 663 664 665 666 667 668 669 670 671 672
        dist_strategy = self.context["valid_strategy"]
        use_ps_gpu = dist_strategy.a_sync_configs["use_ps_gpu"]
        if use_ps_gpu:
            main_program = self.context['loss'].block.program
            if not main_program._fleet_opt:
                main_program._fleet_opt = {}
            main_program._fleet_opt["use_ps_gpu"] = True
            gpus_env = os.getenv("FLAGS_selected_gpus")
            main_program._fleet_opt[
                "worker_places"] = [int(s) for s in gpus_env.split(",")]

T
tangwei12 已提交
673 674 675 676 677 678 679 680
        def sync_strategy_envs():
            kwargs = {}
            kwargs[
                "pserver_endpoints"] = self.role_maker._get_pserver_endpoints()
            kwargs["trainer_id"] = self.role_maker._worker_index()
            return kwargs

        proto_txt = str(worker) + "\n" + str(server)
681 682
        with open('proto_txt', 'w') as f:
            f.write(proto_txt)
T
tangwei12 已提交
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700

        debug = bool(int(os.getenv("PSERVER_DEBUG", "0")))

        if debug:
            print("worker: \n{}".format(proto_txt))

        endpoints = self.compiled_strategy.get_ps_endpoints()

        string_hosts = []
        for idx, ep in enumerate(endpoints):
            host, port = ep.split(":")
            pshost = fluid.core.PSHost(host, int(port), idx)
            string_hosts.append(pshost.serialize_to_string())

        dense_map = self.compiled_strategy.get_the_one_recv_context(
            split_dense_table=self.role_maker._is_heter_parameter_server_mode)
        send_ctx = self.compiled_strategy.get_the_one_send_context(
            split_dense_table=self.role_maker._is_heter_parameter_server_mode,
Z
zmx 已提交
701
            use_origin_program=self.role_maker._is_heter_parameter_server_mode,
T
tangwei12 已提交
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
            ep_list=endpoints)
        trainer_config = self.async_strategy.get_trainer_runtime_config()

        debug = bool(int(os.getenv("PSERVER_DEBUG", "0")))
        if debug:
            print("worker: \n{}".format(proto_txt))
            print("communicator send_ctx:")
            for key in send_ctx:
                print("{}: {}".format(key, send_ctx[key]))
            for key in dense_map:
                print("{}: {}".format(key, dense_map[key]))

        kwargs = {}
        kwargs['need_global_step'] = "0"
        kwargs["trainer_id"] = self.role_maker._role_id()
        kwargs["trainers"] = self.role_maker._worker_num()
718 719
        #if self.role_maker._is_heter_worker():
        #    kwargs["trainer_id"] += kwargs["trainers"]
T
tangwei12 已提交
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736

        for table in server.servers[0].tables:
            if table.table_class == "BarrierTable":
                kwargs["barrier_table_id"] = table.id
                break

        if isinstance(self.async_strategy, SyncStrategy):
            sync_kwargs = sync_strategy_envs()
            kwargs.update(sync_kwargs)

        from paddle.fluid.communicator import Communicator, HeterClient
        self._communicator = Communicator(
            trainer_config.mode, kwargs,
            trainer_config.get_communicator_flags())
        self._communicator.init_with_ctx(send_ctx, dense_map, proto_txt,
                                         string_hosts, fluid.global_scope())

737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
        import paddle.distributed.fleet as fleet
        fleet.util.barrier()
        info = self._communicator.get_client_info()
        if isinstance(info, list) and len(info) > 0:
            all_info = self.role_maker._all_gather(info[0])
            # for unittest
            if not isinstance(all_info, list):
                warnings.warn("gloo may not initialize correctly")
                all_info = [all_info]
            self._communicator.set_clients(all_info)
            # create_c2c_connection default param: 
            #  pserver_timeout_ms=500000
            #  pserver_connect_timeout_ms=10000
            #  max_retry=3
            self._communicator.create_client_to_client_connection()
            print('create c2c connection done')
        else:
            print('cannot create c2c connection')

T
tangwei12 已提交
756 757 758 759 760 761 762 763 764 765 766 767 768 769
        dist_strategy = self.context["valid_strategy"]

        is_test = bool(int(os.getenv("TEST_MODE", "0")))

        if self.role_maker._is_first_worker(
        ) and self.role_maker._is_heter_parameter_server_mode:
            # for ps-heter mode load all parameters on first_worker
            init_params = self.compiled_strategy.get_the_one_recv_context(
                split_dense_table=True, use_origin_program=True)
        else:
            init_params = dense_map

        if not is_test:
            self._communicator.init_params(init_params)
Z
zhaocaibei123 已提交
770 771 772
            fleet.util.barrier()
        self._communicator.pull_dense(init_params)
        fleet.util.barrier()
T
tangwei12 已提交
773 774 775 776 777 778 779 780 781 782 783

        if not self._communicator.is_running():
            self._communicator.start()
        else:
            warnings.warn("communicator has been initialized, skip")

        launch_barrier = dist_strategy.a_sync_configs["launch_barrier"]
        launch_barrier_flag = int(os.getenv("FLAGS_LAUNCH_BARRIER", "1"))
        if launch_barrier and launch_barrier_flag:
            # for trainer wait server ready
            wait_server_ready(self.role_maker._get_pserver_endpoints())
784 785 786 787 788 789 790 791 792 793 794 795 796
            if self.role_maker._is_heter_parameter_server_mode and self.role_maker._get_next_trainers(
            ) != []:
                wait_server_ready(self.role_maker._get_next_trainers())
            if self.role_maker._is_heter_parameter_server_mode:
                previous_trainers = []
                if self.role_maker._get_previous_trainers() != []:
                    previous_trainers = self.role_maker._get_previous_trainers()
                next_trainers = []
                if self.role_maker._get_next_trainers() != []:
                    next_trainers = self.role_maker._get_next_trainers()
                self._heter_client = HeterClient(next_trainers,
                                                 previous_trainers,
                                                 self.role_maker._role_id())
T
tangwei12 已提交
797 798 799 800 801 802 803 804 805 806 807

    def _push_sparse_param(self,
                           var_name,
                           table_id=-1,
                           scope=fluid.global_scope()):
        self._communicator.push_sparse_param(var_name, table_id, scope)

    def _get_executor(self):
        executor = fluid.Executor(fluid.CPUPlace())
        if self.role_maker._is_heter_parameter_server_mode:
            if self.role_maker._is_heter_worker():
808 809 810 811 812
                heter_device_type = self.role_maker._heter_device_type().upper()
                if heter_device_type not in ["GPU", "XPU", "CPU"]:
                    raise ValueError("Heter Worker Not Support Device {}".
                                     format(device_type))
                if heter_device_type == "GPU":
T
tangwei12 已提交
813 814 815
                    executor = Executor(
                        fluid.CUDAPlace(
                            int(os.getenv("FLAGS_selected_gpus", "0"))))
816
                elif heter_device_type == "XPU":
T
tangwei12 已提交
817 818 819 820 821
                    executor = Executor(
                        fluid.XPUPlace(
                            int(os.getenv("FLAGS_selected_xpus", "0"))))
        return executor

822
    def _get_fleet_proto(self, is_server, is_sync, **kwargs):
T
tangwei12 已提交
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
        def _build_merge_accessor(ctx):
            accessor = Accessor()
            accessor.accessor_class = "CommMergeAccessor"
            accessor.optimizer = None

            if ctx.is_sparse():
                accessor.feature_dim = ctx.sections()[0]
                accessor.embedding_dim = ctx.sections()[1]
            else:
                accessor.feature_dim = ctx.sections()[0]
                accessor.embedding_dim = 1

            return accessor

        def _build_barrier_table(idx):
            table = Table()
            table.id = idx
            table.type = "PS_OTHER_TABLE"
            table.table_class = "BarrierTable"
            table.shard_num = 256

            accessor = Accessor()
            accessor.accessor_class = "CommMergeAccessor"
            accessor.optimizer = None
            accessor.feature_dim = 0
            accessor.embedding_dim = 0
            table.accessor = accessor

            common = CommonAccessor()
            common.table_name = "barrier_table"
            trainer_num = self.compiled_strategy.get_trainers()
            if self.role_maker._is_heter_parameter_server_mode:
                trainer_num += len(self.role_maker._get_heter_worker_endpoints(
                ))
            common.trainer_num = trainer_num
            common.attrs = ""
            common.dims = []
            common.params = []
            table.common = common
            return table

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
        def _build_tensor_table(idx, tensor_dict):
            table = Table()
            table.id = idx
            table.type = "PS_OTHER_TABLE"
            table.table_class = tensor_dict["tensor_table_class"]
            table.shard_num = 256

            accessor = Accessor()
            accessor.accessor_class = "CommMergeAccessor"
            accessor.optimizer = None
            accessor.feature_dim = 0
            accessor.embedding_dim = 0
            table.accessor = accessor

            common = CommonAccessor()
            common.table_name = tensor_dict["feed_var_name"]
            common.trainer_num = self.compiled_strategy.get_trainers()
            common.attrs = ""
            common.dims = []
            common.params = []
            table.common = common

            tensor = Tensor()
            tensor.main_program_id = tensor_dict["main_program_id"]
            tensor.startup_program_id = tensor_dict["startup_program_id"]
            tensor.feed_var_name = tensor_dict["feed_var_name"]
            tensor.fetch_var_name = tensor_dict["fetch_var_name"]
            tensor.tensor_table_class = tensor_dict["tensor_table_class"]
            table.tensor = tensor

            return table

        def _add_tensor_table(tables):
            tensor_table_dict = self.compiled_strategy.get_tensor_table_dict()
            program_idx = 0
            for table_name in tensor_table_dict:
                if tensor_table_dict[table_name]["startup_program"] != None:
                    tensor_table_dict[table_name][
                        "startup_program_id"] = program_idx
                    self._server_sub_program.append(tensor_table_dict[
                        table_name]["startup_program"].desc)
                    program_idx += 1
                if tensor_table_dict[table_name]["main_program"] != None:
                    tensor_table_dict[table_name][
                        "main_program_id"] = program_idx
                    self._server_sub_program.append(tensor_table_dict[
                        table_name]["main_program"].desc)
                    program_idx += 1
                # Todo: Hard code for lr_decay table apply table id
                new_table = _build_tensor_table(
                    len(tables), tensor_table_dict[table_name])
                tables.append(new_table)
            return tables

T
tangwei12 已提交
918 919 920 921 922
        def _get_tables():
            send_ctx = self.compiled_strategy.get_the_one_send_context(
                use_origin_program=True,
                split_dense_table=self.role_maker.
                _is_heter_parameter_server_mode)
T
tangwei12 已提交
923

924
            tables = []
T
tangwei12 已提交
925
            for idx, (name, ctx) in enumerate(send_ctx.items()):
926
                print(" wxm python test send_ctx.items-->", idx, (name, ctx))
T
tangwei12 已提交
927 928 929
                if ctx.is_tensor_table() or len(ctx.origin_varnames()) < 1:
                    continue

T
tangwei12 已提交
930 931
                table = Table()
                table.id = ctx.table_id()
T
tangwei12 已提交
932
                common = CommonAccessor()
933

T
tangwei12 已提交
934 935
                if ctx.is_sparse():
                    table.type = "PS_SPARSE_TABLE"
T
tangwei12 已提交
936
                    table.shard_num = 256
T
tangwei12 已提交
937

T
Thunderbrook 已提交
938 939 940
                    common.table_name = self.compiled_strategy.grad_name_to_param_name[
                        ctx.origin_varnames()[0]]

T
tangwei12 已提交
941 942 943
                    if self.compiled_strategy.is_geo_mode():
                        table.table_class = "SparseGeoTable"
                    else:
944 945 946 947 948 949 950 951
                        all_table_proto = self.context[
                            "user_defined_strategy"].sparse_table_configs
                        table_proto = all_table_proto.add()
                        for proto in all_table_proto:
                            if proto.table_name == common.table_name:
                                table_proto = proto
                                break
                        if table_proto.HasField("table_class"):
952 953 954 955 956 957 958 959 960
                            table.table_class = table_proto.table_class
                        else:
                            table.table_class = parse_table_class(
                                common.table_name, self.origin_main_program)
                        if table.table_class != 'MemorySparseTable':
                            table.table_class = 'MemorySparseTable'
                            warnings.warn(
                                "The PS mode must use MemorySparseTable.")

961
                        if table_proto.HasField("shard_num"):
962 963 964 965 966 967 968 969 970 971 972
                            table.shard_num = table_proto.shard_num
                        else:
                            table.shard_num = 1000
                            warnings.warn(
                                "The shard_num of sparse table is not set, use default value 1000."
                            )

                        if table_proto.accessor.ByteSize() == 0:
                            warnings.warn(
                                "The accessor of sparse table is not set, use default value."
                            )
973 974 975
                        get_default_accessor_proto(table_proto.accessor,
                                                   common.table_name,
                                                   self.origin_main_program)
976 977 978
                        check_embedding_dim(table_proto.accessor,
                                            common.table_name,
                                            self.origin_main_program)
979 980 981
                        from google.protobuf import text_format
                        table.accessor_proto = text_format.MessageToString(
                            table_proto.accessor)
T
tangwei12 已提交
982
                else:
T
tangwei12 已提交
983 984 985
                    table.type = "PS_DENSE_TABLE"
                    table.table_class = "CommonDenseTable"
                    table.shard_num = 256
T
tangwei12 已提交
986 987
                    common.table_name = "MergedDense"

988
                adam_d2sum = self.context["user_defined_strategy"].adam_d2sum
T
tangwei12 已提交
989 990 991 992
                common.parse_by_optimizer(ctx.origin_varnames()[0],
                                          ctx.is_sparse(),
                                          ctx.sections()[1] if ctx.is_sparse()
                                          else ctx.sections()[0],
993
                                          self.compiled_strategy, adam_d2sum)
T
tangwei12 已提交
994

T
tangwei12 已提交
995 996 997 998
                if ctx.is_sparse():
                    common.parse_entry(common.table_name,
                                       self.origin_main_program)

T
tangwei12 已提交
999 1000 1001 1002 1003 1004
                if is_sync:
                    common.sync = "true"
                else:
                    common.sync = "false"
                table.common = common

1005 1006 1007
                if table.table_class != 'MemorySparseTable':
                    accessor = _build_merge_accessor(ctx)
                    table.accessor = accessor
1008 1009 1010 1011 1012 1013 1014 1015
                tables.append(table)

            tensor_table_dict = self.compiled_strategy.get_tensor_table_dict()
            if len(tensor_table_dict) > 0:
                tables = _add_tensor_table(tables)
            else:
                empty_porgram = Program()
                self._server_sub_program.append(empty_porgram.desc)
T
tangwei12 已提交
1016

1017 1018
            barrier_table = _build_barrier_table(len(tables))
            tables.append(barrier_table)
T
tangwei12 已提交
1019 1020 1021 1022 1023 1024 1025
            return tables

        if is_server:
            server = Server()
            downpour_server = DownpourServer()

            service = Service()
T
Thunderbrook 已提交
1026 1027 1028 1029 1030
            dist_strategy = self.context["valid_strategy"]
            use_ps_gpu = dist_strategy.a_sync_configs["use_ps_gpu"]
            if use_ps_gpu:
                service.server_class = "PsLocalServer"
                service.client_class = "PsLocalClient"
T
tangwei12 已提交
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
            downpour_server.set_service_param(service)

            tables = _get_tables()
            downpour_server.tables = tables
            server.add_server(downpour_server)
            return server
        else:
            worker = Worker()
            downpour_worker = DownpourWorker()

            tables = _get_tables()
            downpour_worker.tables = tables
            worker.add_worker(downpour_worker)
            return worker

    def _init_server(self, dirname=None, var_names=None, **kwargs):
        role_id = self.compiled_strategy.get_role_id()
        endpoints = self.compiled_strategy.get_ps_endpoints()
        is_sync = self.compiled_strategy.is_sync_mode()
T
tangwei12 已提交
1050
        trainers = self.compiled_strategy.get_trainers()
1051 1052
        if self.role_maker._is_heter_parameter_server_mode:
            trainers += len(self.role_maker._get_heter_worker_endpoints())
T
tangwei12 已提交
1053 1054
        server = self._get_fleet_proto(is_server=True, is_sync=is_sync)
        proto_txt = str(server)
1055 1056 1057
        fs_client = fsClient(self.context["user_defined_strategy"]
                             .fs_client_param)
        proto_txt = proto_txt + "\n" + fs_client.to_string()
T
tangwei12 已提交
1058

T
tangwei12 已提交
1059
        debug = bool(int(os.getenv("PSERVER_DEBUG", "0")))
T
tangwei12 已提交
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
        if debug:
            print("server: \n{}".format(proto_txt))

        string_hosts = []
        for idx, ep in enumerate(endpoints):
            host, port = ep.split(":")
            pshost = fluid.core.PSHost(host, int(port), idx)
            string_hosts.append(pshost.serialize_to_string())

        self._server = fluid.core.DistFleetWrapper()
T
tangwei12 已提交
1070
        self._server.init_server(proto_txt, string_hosts, role_id, trainers,
1071
                                 self._server_sub_program)
T
tangwei12 已提交
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102

        from paddle.fluid.incubate.fleet.parameter_server.ir.public import get_sparse_tablenames

        dist_varnames = get_sparse_tablenames(self.origin_main_program, True)
        sparse_varnames = get_sparse_tablenames(self.origin_main_program, False)

        distributed_varnames = dist_varnames + sparse_varnames

        if var_names is None:
            load_varnames = distributed_varnames
        else:
            for var_name in var_names:
                if var_name not in distributed_varnames:
                    raise ValueError(
                        "fleet.init server can only load sparse variables in {}".
                        format(distributed_varnames))
            load_varnames = var_names

        if dirname is None or not load_varnames:
            return

        sparse_table_maps = {}
        for table in server.servers[0].tables:
            if table.type == "PS_SPARSE_TABLE" and table.common is not None:
                sparse_table_maps[table.common.table_name] = table.id

        dirname = os.path.normpath(dirname)
        pserver_id = self.role_maker._role_id()

        for var_name in load_varnames:
            table_id = sparse_table_maps[var_name]
1103 1104 1105 1106 1107
            # path = os.path.join(dirname, var_name + PSERVER_SAVE_SUFFIX,
            #                     "{}.block{}.txt".format(var_name, pserver_id))
            # meta = os.path.join(dirname, var_name + PSERVER_SAVE_SUFFIX,
            #                     "{}.block{}.meta".format(var_name, pserver_id))
            self._server.load_sparse(dirname, "0", table_id)
T
tangwei12 已提交
1108 1109 1110 1111 1112 1113 1114 1115

    def _run_server(self):
        ep = self.compiled_strategy.get_ps_endpoint()
        host, port = ep.split(":")
        self._server.run_server(host, int(port))

    def _stop_worker(self):
        self._communicator.stop()
1116 1117
        if self.role_maker._is_heter_parameter_server_mode:
            assert self._heter_client != None, "heter client should not be None in heterps mode"
T
tangwei12 已提交
1118
            self._heter_client.stop()
1119 1120
        #executor = self._get_executor()
        #executor.close()
T
tangwei12 已提交
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144

    @staticmethod
    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False

            from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_varname_parts

            origin_varname, _, _ = _get_varname_parts(var.name)
            if origin_varname.endswith("@GRAD"):
                return False

            if origin_varname == "learning_rate_0":
                return False

            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                    var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                    var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        return is_valid

1145 1146 1147 1148 1149
    def _save_sparse_params(self, executor, dirname, context, main_program,
                            mode):
        from paddle.fluid.incubate.fleet.parameter_server.ir.public import get_sparse_tablenames
        distributed_varnames = get_sparse_tablenames(
            self.compiled_strategy.origin_main_program, True)
T
tangwei12 已提交
1150 1151
        values = []
        for id, names in context.items():
T
tangwei12 已提交
1152
            if names[0] not in distributed_varnames:
1153
                # only save sparse param to local
1154 1155 1156 1157
                try:
                    self._worker.recv_and_save_model(id, dirname)
                except:
                    pass
1158 1159
            # save sparse & distributed param on server
            self._worker.save_one_model(id, dirname, mode)
T
tangwei12 已提交
1160
            values.extend(names)
1161
        # self._worker.save_all_model(dirname, mode)
T
tangwei12 已提交
1162 1163
        return values

1164 1165 1166 1167 1168
    def _save_distributed_persistables(self,
                                       executor,
                                       dirname,
                                       main_program,
                                       mode=0):
T
tangwei12 已提交
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178

        denses = self.compiled_strategy.get_the_one_recv_context(
            is_dense=True,
            split_dense_table=self.role_maker._is_heter_parameter_server_mode,
            use_origin_program=True)
        sparses = self.compiled_strategy.get_the_one_recv_context(
            is_dense=False,
            split_dense_table=self.role_maker._is_heter_parameter_server_mode,
            use_origin_program=True)

1179 1180
        sparse_varnames = self._save_sparse_params(executor, dirname, sparses,
                                                   main_program, mode)
T
tangwei12 已提交
1181 1182 1183 1184

        recv_dense_varnames = []
        for id, names in denses.items():
            recv_dense_varnames.extend(names)
1185
        self._communicator.pull_dense(denses)
T
tangwei12 已提交
1186

1187
        saved_varnames = sparse_varnames
T
tangwei12 已提交
1188 1189 1190 1191 1192 1193

        remaining_vars = list(
            filter(
                TheOnePSRuntime.__exclude_vars(saved_varnames),
                main_program.list_vars()))

T
tangwei12 已提交
1194 1195
        import paddle
        for var in remaining_vars:
1196 1197
            # if var.name not in recv_dense_varnames:
            #     continue
T
tangwei12 已提交
1198 1199 1200
            tensor = var.get_value()
            paddle.save(
                tensor, os.path.join(dirname, var.name), use_binary_format=True)
T
tangwei12 已提交
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220

    def _ps_inference_save_persistables(self,
                                        executor,
                                        dirname,
                                        main_program=None,
                                        mode=0,
                                        **kwargs):
        """
        This function filters out all variables with `persistable==True` from the
        give `main_program` and then saves these variables to the folder `dirname`
        or file `filename`.

        The `dirname` is used to specify the folder where persistable variables
        are going to be saved. If you would like to save variables in separate
        files, set `filename` None; if you would like to save all variables in a
        single file, use `filename` to specify the file name.
        """

        if isinstance(executor, ParallelExecutor):
            raise TypeError(
T
tangwei12 已提交
1221
                "in fleet.save() function, executor must be as Executor type, ParallelExecutor is not allowed"
T
tangwei12 已提交
1222 1223 1224 1225
            )

        if not isinstance(executor, Executor):
            raise TypeError(
T
tangwei12 已提交
1226
                "in fleet.save() function, executor must be as Executor type")
T
tangwei12 已提交
1227 1228 1229 1230 1231 1232

        if main_program is None:
            main_program = self.compiled_strategy.get_origin_ps_main_program()

        if isinstance(main_program, CompiledProgram):
            raise TypeError(
T
tangwei12 已提交
1233
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
T
tangwei12 已提交
1234 1235
            )

1236
        # Todo(MrChengmo): Save optimizer status
1237 1238 1239
        # self._save_distributed_persistables(executor, dirname, main_program,
        #                                     mode)
        self._worker.save_all_model(dirname, mode)
T
tangwei12 已提交
1240 1241 1242 1243 1244 1245 1246

    def _ps_inference_save_inference_model(self,
                                           executor,
                                           dirname,
                                           feeded_var_names,
                                           target_vars,
                                           main_program=None,
1247 1248
                                           export_for_deployment=True,
                                           mode=0):
T
tangwei12 已提交
1249 1250 1251 1252 1253 1254 1255
        """
        Prune the given `main_program` to build a new program especially for inference,
        and then save it and all related parameters to given `dirname` by the `executor`.
        """

        if isinstance(executor, ParallelExecutor):
            raise TypeError(
T
tangwei12 已提交
1256
                "in fleet.save() function, executor must be as Executor type, ParallelExecutor is not allowed"
T
tangwei12 已提交
1257 1258 1259 1260
            )

        if not isinstance(executor, Executor):
            raise TypeError(
T
tangwei12 已提交
1261 1262 1263 1264 1265 1266 1267 1268
                "in fleet.save() function, executor must be as Executor type")

        import paddle
        program = self.origin_main_program if main_program is None else main_program

        if isinstance(program, CompiledProgram):
            raise TypeError(
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
T
tangwei12 已提交
1269 1270
            )

T
tangwei12 已提交
1271 1272 1273 1274 1275 1276 1277 1278 1279
        feed_vars = [
            program.global_block().var(name) for name in feeded_var_names
        ]

        infer_program = paddle.static.normalize_program(program, feed_vars,
                                                        target_vars)

        infer_program._copy_dist_param_info_from(program)

1280 1281 1282 1283
        if dirname.startswith("afs:") or dirname.startswith("hdfs:"):
            model_path = "./dnn_plugin"
        else:
            model_path = os.path.join(dirname, "dnn_plugin")
T
tangwei12 已提交
1284
        model_basename = "__model__"
1285
        model_basename = os.path.join(model_path, model_basename)
T
tangwei12 已提交
1286 1287
        paddle.save(infer_program, model_basename)

1288 1289 1290 1291
        sparses = self.compiled_strategy.get_the_one_recv_context(
            is_dense=False,
            split_dense_table=self.role_maker._is_heter_parameter_server_mode,
            use_origin_program=True)
1292 1293
        sparse_names = self._save_sparse_params(executor, dirname, sparses,
                                                main_program, mode)
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305

        denses = self.compiled_strategy.get_the_one_recv_context(
            is_dense=True,
            split_dense_table=self.role_maker._is_heter_parameter_server_mode,
            use_origin_program=True)
        self._communicator.pull_dense(denses)

        generate_vars = self.context[
            "user_defined_strategy"].trainer_desc_configs["stat_var_names"]
        generate_vars = [var for var in generate_vars]
        remaining_vars = list(
            filter(
1306
                TheOnePSRuntime.__exclude_vars(sparse_names),
1307
                infer_program.list_vars()))
1308

1309 1310 1311 1312 1313 1314 1315
        for var in remaining_vars:
            tensor = var.get_value()
            paddle.save(
                tensor,
                os.path.join(model_path, var.name),
                use_binary_format=True)

T
tangwei12 已提交
1316 1317 1318 1319 1320
    def _save_inference_model(self, *args, **kwargs):
        self._ps_inference_save_inference_model(*args, **kwargs)

    def _save_persistables(self, *args, **kwargs):
        self._ps_inference_save_persistables(*args, **kwargs)
1321

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
    def _load_sparse_params(self, dirname, context, main_program, mode):
        from paddle.fluid.incubate.fleet.parameter_server.ir.public import get_sparse_tablenames
        distributed_varnames = get_sparse_tablenames(
            self.compiled_strategy.origin_main_program, True)
        values = []
        for id, names in context.items():
            if names[0] not in distributed_varnames:
                # TODO: only load sparse param from local
                warnings.warn("varname is not in distributed_varnames, pass")
            # load sparse & distributed param on server
            self._worker.load_one_table(id, dirname, mode)
            values.extend(names)
        return values

1336 1337 1338 1339
    def _ps_inference_load_inference_model(self,
                                           dirname,
                                           mode=0,
                                           main_program=None):
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
        if main_program is None:
            main_program = self.compiled_strategy.get_origin_ps_main_program()

        if isinstance(main_program, CompiledProgram):
            raise TypeError(
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
            )

        denses = self.compiled_strategy.get_the_one_recv_context(
            is_dense=True,
            split_dense_table=self.role_maker._is_heter_parameter_server_mode,
            use_origin_program=True)
        sparses = self.compiled_strategy.get_the_one_recv_context(
            is_dense=False,
            split_dense_table=self.role_maker._is_heter_parameter_server_mode,
            use_origin_program=True)

        sparse_varnames = self._load_sparse_params(dirname, sparses,
                                                   main_program, mode)

        recv_dense_varnames = []
        for id, names in denses.items():
            recv_dense_varnames.extend(names)

        loaded_varnames = sparse_varnames

        remaining_vars = list(
            filter(
                TheOnePSRuntime.__exclude_vars(loaded_varnames),
                main_program.list_vars()))

1371 1372 1373 1374
        if dirname.startswith("afs:") or dirname.startswith("hdfs:"):
            model_path = "./dnn_plugin"
        else:
            model_path = os.path.join(dirname, "dnn_plugin")
1375 1376 1377 1378
        import paddle
        for var in remaining_vars:
            if var.name not in recv_dense_varnames:
                continue
1379
            tensor = paddle.load(os.path.join(model_path, var.name))
1380 1381 1382 1383
            var.set_value(tensor)

        self._communicator.init_params(denses)

1384 1385 1386
    def _load_distributed_persistables(self, path, mode):
        self._worker.load_model(path, mode)

T
Thunderbrook 已提交
1387
    def load_model(self, path, mode):
1388 1389 1390 1391
        if mode == 0 or mode == 3:
            self._load_distributed_persistables(path, mode)
        else:
            self._ps_inference_load_inference_model(path, mode)
1392
        # self._load_distributed_persistables(path, mode=mode)
T
Thunderbrook 已提交
1393

1394 1395 1396 1397 1398 1399 1400
    def _shrink(self, threshold=None):
        if threshold is not None:
            warnings.warn(
                "The param threshold is not used in MemorySparseTable, if you need to shrink, please set the config of accessor"
            )
        else:
            threshold = 0
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
        import paddle.distributed.fleet as fleet
        fleet.util.barrier()
        if self.role_maker._is_first_worker():
            sparses = self.compiled_strategy.get_the_one_recv_context(
                is_dense=False,
                split_dense_table=self.role_maker.
                _is_heter_parameter_server_mode,
                use_origin_program=True)

            for id, names in sparses.items():
                self._worker.shrink_sparse_table(id, threshold)
        fleet.util.barrier()