nan_inf_utils_detail.cc 19.6 KB
Newer Older
W
WangXi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/details/nan_inf_utils_detail.h"
16 17

#include "paddle/fluid/framework/details/nan_inf_utils.h"
W
WangXi 已提交
18
#include "paddle/fluid/framework/op_proto_maker.h"
19
#include "paddle/fluid/framework/scope.h"
20
#include "paddle/phi/common/amp_type_traits.h"
21 22

#ifdef PADDLE_WITH_ASCEND_CL
23
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
24
#endif
25
#include "paddle/fluid/framework/convert_utils.h"
Z
zyfncg 已提交
26
#include "paddle/phi/kernels/funcs/eigen/extensions.h"
27

28 29
DECLARE_int32(check_nan_inf_level);

W
WangXi 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
namespace paddle {
namespace framework {
namespace details {

static std::once_flag white_list_init_flag;

static int op_role_nan_inf_white_list = 0;

static constexpr int FORWARD = 0x10000;

// lazy init
static const std::unordered_map<std::string, int>& role_str2int() {
  /* In op_proto_maker.h
   * framework::OpRole::kForward      = 0x0000,
   * framework::OpRole::kBackward     = 0x0001,
   * framework::OpRole::kOptimize     = 0x0002,
   * framework::OpRole::kRPC          = 0x0004,
   * framework::OpRole::kDist         = 0x0008,
   * framework::OpRole::kLRSched      = 0x0010,
   * framework::OpRole::kLoss         = 0x0100,
   * framework::OpRole::kNotSpecified = 0x1000,
   */
  static const std::unordered_map<std::string, int> _role_str2int = {
      {"forward", FORWARD}, /* kForward=0, can't filter */
      {"backward", static_cast<int>(framework::OpRole::kBackward)},
      {"optimize", static_cast<int>(framework::OpRole::kOptimize)},
      {"rpc", static_cast<int>(framework::OpRole::kRPC)},
      {"dist", static_cast<int>(framework::OpRole::kDist)},
      {"lrsched", static_cast<int>(framework::OpRole::kLRSched)},
      {"loss", static_cast<int>(framework::OpRole::kLoss)},
      {"default", static_cast<int>(framework::OpRole::kNotSpecified)},
  };
  return _role_str2int;
}

static std::unordered_set<std::string>& op_type_nan_inf_white_list() {
  static std::unordered_set<std::string> _op_type_nan_inf_white_list = {
      "coalesce_tensor", /* This Op will alloc tensor, and may not init space */
  };
  return _op_type_nan_inf_white_list;
}

static std::unordered_map<std::string, std::vector<std::string>>&
op_var_nan_inf_white_list() {
  static std::unordered_map<std::string, std::vector<std::string>>
      _op_var_nan_inf_white_list = {
          /* encoded & gather var consist of idx&val, can't judge directly */
          {"dgc", {"__dgc_encoded__", "__dgc_gather__"}},
      };
  return _op_var_nan_inf_white_list;
}

static void InitWhiteListFormEnv() {
  // op_type_skip and op_var_skip may be NULL.
  // So need init static value in there, prevent thread competition.
  // NOTE. role_str2int needn't do this for it only used in this func.
  op_type_nan_inf_white_list();
  op_var_nan_inf_white_list();

  // export PADDLE_INF_NAN_SKIP_OP="op0,op1,op2"
  // export PADDLE_INF_NAN_SKIP_ROLE="role1,role2,role3"
  // export PADDLE_INF_NAN_SKIP_VAR="op0:var0,op0:var1,op1:var0"
  const char* op_type_skip = std::getenv("PADDLE_INF_NAN_SKIP_OP");
  const char* op_role_skip = std::getenv("PADDLE_INF_NAN_SKIP_ROLE");
  const char* op_var_skip = std::getenv("PADDLE_INF_NAN_SKIP_VAR");

96
  if (op_type_skip) {
W
WangXi 已提交
97 98 99 100 101 102 103
    std::stringstream ss(op_type_skip);
    std::string op_type;
    while (std::getline(ss, op_type, ',')) {
      op_type_nan_inf_white_list().emplace(op_type);
    }
  }

104
  if (op_role_skip) {
W
WangXi 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118
    std::stringstream ss(op_role_skip);
    std::string op_role;
    while (std::getline(ss, op_role, ',')) {
      PADDLE_ENFORCE_EQ(role_str2int().find(op_role) != role_str2int().end(),
                        true,
                        platform::errors::InvalidArgument(
                            "Skip role must be one of "
                            "{forward,backward,optimize,rpc,dist,lrsched,loss,"
                            "default}, instead of %s",
                            op_role));
      op_role_nan_inf_white_list |= role_str2int().at(op_role);
    }
  }

119
  if (op_var_skip) {
W
WangXi 已提交
120 121 122 123 124
    std::stringstream ss(op_var_skip);
    std::string op_var;
    while (std::getline(ss, op_var, ',')) {
      auto pos = op_var.find(":");
      PADDLE_ENFORCE_EQ(
125 126
          pos != std::string::npos,
          true,
W
WangXi 已提交
127 128 129 130 131 132 133 134 135 136
          platform::errors::InvalidArgument(
              "Skip var format must be op:var, instead of %s", op_var));
      std::string op = op_var.substr(0, pos);
      std::string var = op_var.substr(pos + 1);

      op_var_nan_inf_white_list()[op].emplace_back(var);
    }
  }
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
template <
    typename T,
    std::enable_if_t<!std::is_same<T, phi::dtype::complex<float>>::value &&
                         !std::is_same<T, phi::dtype::complex<double>>::value,
                     bool> = true>
static void CheckNanInfCpuImpl(const T* value_ptr,
                               const int64_t numel,
                               const std::string& cpu_hint_str) {
  using MT = typename phi::dtype::template MPTypeTrait<T>::Type;

#ifdef _OPENMP
  // Use maximum 4 threads to collect the nan and inf information.
  int num_threads = std::max(omp_get_num_threads(), 1);
  num_threads = std::min(num_threads, 4);
#else
  int num_threads = 1;
#endif
W
WangXi 已提交
154

155 156 157 158 159
  std::vector<int64_t> thread_num_nan(num_threads, 0);
  std::vector<int64_t> thread_num_inf(num_threads, 0);
  std::vector<MT> thread_min_value(num_threads, static_cast<MT>(value_ptr[0]));
  std::vector<MT> thread_max_value(num_threads, static_cast<MT>(value_ptr[0]));
  std::vector<MT> thread_mean_value(num_threads, static_cast<MT>(0));
160

161 162
#ifdef _OPENMP
#pragma omp parallel num_threads(num_threads)
W
WangXi 已提交
163
#endif
164 165 166 167 168 169 170 171 172 173
  {
#ifdef _OPENMP
    int64_t tid = omp_get_thread_num();
    int64_t chunk_size = (numel + num_threads - 1) / num_threads;
    int64_t begin = tid * chunk_size;
    int64_t end = chunk_size + begin > numel ? numel : chunk_size + begin;
#else
    int64_t tid = 0;
    int64_t begin = 0;
    int64_t end = numel;
W
WangXi 已提交
174
#endif
175 176
    for (int64_t i = begin; i < end; ++i) {
      MT value = static_cast<MT>(value_ptr[i]);
W
WangXi 已提交
177

178 179 180
      thread_min_value[tid] = std::min(thread_min_value[tid], value);
      thread_max_value[tid] = std::max(thread_max_value[tid], value);
      thread_mean_value[tid] += value / static_cast<MT>(numel);
181

182 183 184 185 186 187
      if (std::isnan(value)) {
        thread_num_nan[tid] += 1;
      } else if (std::isinf(value)) {
        thread_num_inf[tid] += 1;
      }
    }
188 189
  }

190 191 192 193 194 195 196 197 198 199 200
  int64_t num_nan = 0;
  int64_t num_inf = 0;
  MT min_value = thread_min_value[0];
  MT max_value = thread_max_value[0];
  MT mean_value = static_cast<MT>(0);
  for (int i = 0; i < num_threads; ++i) {
    num_nan += thread_num_nan[i];
    num_inf += thread_num_inf[i];
    min_value = std::min(thread_min_value[i], min_value);
    max_value = std::max(thread_max_value[i], max_value);
    mean_value += thread_mean_value[i];
W
WangXi 已提交
201 202
  }

203 204 205 206 207 208 209 210
  PrintForDifferentLevel<T, MT>(cpu_hint_str.c_str(),
                                numel,
                                num_nan,
                                num_inf,
                                max_value,
                                min_value,
                                mean_value,
                                FLAGS_check_nan_inf_level);
W
WangXi 已提交
211
}
212

213 214 215 216 217 218 219 220 221
template <
    typename T,
    std::enable_if_t<std::is_same<T, phi::dtype::complex<float>>::value ||
                         std::is_same<T, phi::dtype::complex<double>>::value,
                     bool> = true>
void CheckNanInfCpuImpl(const T* value_ptr,
                        const int64_t numel,
                        const std::string& cpu_hint_str) {
  using RealType = typename T::value_type;
222

223
  RealType real_sum = 0.0f, imag_sum = 0.0f;
224

225 226 227 228 229 230 231
#ifdef _OPENMP
#pragma omp parallel for reduction(+ : real_sum) reduction(+ : imag_sum)
#endif
  for (int64_t i = 0; i < numel; ++i) {
    T value = value_ptr[i];
    real_sum += (value.real - value.real);
    imag_sum += (value.imag - value.imag);
232 233 234 235 236 237 238
  }

  if (std::isnan(real_sum) || std::isinf(real_sum) || std::isnan(imag_sum) ||
      std::isinf(imag_sum)) {
    // hot fix for compile failed in gcc4.8
    // here also need print detail info of nan or inf later
    PADDLE_THROW(platform::errors::PreconditionNotMet(
239
        "There are NAN or INF in %s.", cpu_hint_str));
240 241 242
  }
}

W
WangXi 已提交
243 244
template <>
template <typename T>
L
Leo Chen 已提交
245
void TensorCheckerVisitor<phi::CPUContext>::apply(
246 247 248 249 250
    typename std::enable_if<
        std::is_floating_point<T>::value ||
        std::is_same<T, ::paddle::platform::complex<float>>::value ||
        std::is_same<T, ::paddle::platform::complex<double>>::value>::type*)
    const {
251 252 253
  std::string cpu_hint_str =
      GetCpuHintString<T>(op_type, var_name, tensor.place());
  CheckNanInfCpuImpl(tensor.data<T>(), tensor.numel(), cpu_hint_str);
W
WangXi 已提交
254 255 256
}

template <>
L
Leo Chen 已提交
257 258
void tensor_check<phi::CPUContext>(const std::string& op_type,
                                   const std::string& var_name,
259
                                   const phi::DenseTensor& tensor,
L
Leo Chen 已提交
260 261
                                   const platform::Place& place) {
  TensorCheckerVisitor<phi::CPUContext> vistor(
262
      op_type, var_name, tensor, place);
263
  VisitDataType(framework::TransToProtoVarType(tensor.dtype()), vistor);
W
WangXi 已提交
264 265 266 267
}

void CheckVarHasNanOrInf(const std::string& op_type,
                         const std::string& var_name,
268
                         const framework::Variable* var,
W
WangXi 已提交
269 270
                         const platform::Place& place) {
  PADDLE_ENFORCE_NOT_NULL(
271 272 273
      var,
      platform::errors::NotFound(
          "Cannot find var: `%s` in op `%s`.", var_name, op_type));
W
WangXi 已提交
274

275
  const phi::DenseTensor* tensor{nullptr};
276 277
  if (var->IsType<phi::DenseTensor>()) {
    tensor = &var->Get<phi::DenseTensor>();
278 279
  } else if (var->IsType<phi::SelectedRows>()) {
    tensor = &var->Get<phi::SelectedRows>().value();
W
WangXi 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293
  } else {
    VLOG(10) << var_name << " var_name need not to check";
    return;
  }

  if (tensor->memory_size() == 0) {
    VLOG(10) << var_name << " var_name need not to check, size == 0";
    return;
  }

  VLOG(10) << "begin check " << op_type << " var_name:" << var_name
           << ", place:" << tensor->place() << ", numel:" << tensor->numel();

  if (platform::is_gpu_place(tensor->place())) {
294
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
L
Leo Chen 已提交
295
    tensor_check<phi::GPUContext>(op_type, var_name, *tensor, place);
W
WangXi 已提交
296 297
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
298 299
        "phi::DenseTensor[%s] use gpu place. PaddlePaddle must compile "
        "with GPU.",
W
WangXi 已提交
300
        var_name));
301 302 303 304
#endif
    return;
  } else if (platform::is_xpu_place(tensor->place())) {
#ifdef PADDLE_WITH_XPU
305 306
    if (framework::TransToProtoVarType(tensor->dtype()) !=
        proto::VarType::FP32) {
307 308 309 310
      return;
    }

    float* cpu_data = new float[tensor->numel()];
311 312
    memory::Copy(platform::CPUPlace(),
                 static_cast<void*>(cpu_data),
313
                 tensor->place(),
T
taixiurong 已提交
314 315
                 static_cast<const void*>(tensor->data<float>()),
                 tensor->numel() * sizeof(float));
316 317 318 319 320 321 322 323 324
    bool flag = false;
    for (int i = 0; i < tensor->numel(); i++) {
      if (isnan(cpu_data[i]) || isinf(cpu_data[i])) {
        flag = true;
        break;
      }
    }
    delete[] cpu_data;
    PADDLE_ENFORCE_NE(
325 326 327
        flag,
        true,
        platform::errors::Fatal(
328 329 330
            "Operator %s output phi::DenseTensor %s contains Inf.",
            op_type,
            var_name));
331 332
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
333 334
        "phi::DenseTensor[%s] use xpu place. PaddlePaddle must compile "
        "with XPU.",
335
        var_name));
W
WangXi 已提交
336 337
#endif
    return;
338 339
  } else if (platform::is_npu_place(tensor->place())) {
#ifdef PADDLE_WITH_ASCEND_CL
340 341
    if (framework::TransToProtoVarType(tensor->dtype()) !=
        proto::VarType::FP32) {
342 343 344
      return;
    }

345
    phi::DenseTensor cpu_tensor;
346 347
    cpu_tensor.Resize(tensor->dims());
    float* cpu_data = static_cast<float*>(
348
        cpu_tensor.mutable_data(platform::CPUPlace(), tensor->dtype()));
W
WangXi 已提交
349

350 351 352 353 354 355 356 357 358
    framework::TensorCopySync(*tensor, platform::CPUPlace(), &cpu_tensor);
    bool flag = false;
    for (int i = 0; i < cpu_tensor.numel(); i++) {
      if (isnan(cpu_data[i]) || isinf(cpu_data[i])) {
        flag = true;
        break;
      }
    }
    PADDLE_ENFORCE_NE(
359 360 361
        flag,
        true,
        platform::errors::Fatal(
362 363 364
            "Operator %s output phi::DenseTensor %s contains Inf.",
            op_type,
            var_name));
365 366
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
367 368
        "phi::DenseTensor[%s] use npu place. PaddlePaddle must compile "
        "with NPU.",
369 370 371 372
        var_name));
#endif
    return;
  }
L
Leo Chen 已提交
373
  tensor_check<phi::CPUContext>(op_type, var_name, *tensor, place);
W
WangXi 已提交
374 375
}

376
void CheckVarHasNanOrInf(const std::string& op_type,
377
                         const framework::Scope& scope,
378 379 380 381 382 383
                         const std::string& var_name,
                         const platform::Place& place) {
  auto* var = scope.FindVar(var_name);
  CheckVarHasNanOrInf(op_type, var_name, var, place);
}

W
WangXi 已提交
384 385 386
bool IsSkipOp(const framework::OperatorBase& op) {
  if (op_type_nan_inf_white_list().count(op.Type()) != 0) return true;

387 388 389 390 391
  int op_role = 0;
  if (op.HasAttr(framework::OpProtoAndCheckerMaker::OpRoleAttrName())) {
    op_role = op.template Attr<int>(
        framework::OpProtoAndCheckerMaker::OpRoleAttrName());
  }
W
WangXi 已提交
392 393 394 395 396 397 398 399 400 401

  // kForward=0, can't filter
  if (op_role == static_cast<int>(framework::OpRole::kForward)) {
    op_role = FORWARD;
  }
  if (op_role_nan_inf_white_list & op_role) return true;

  return false;
}

402 403 404 405 406
#ifdef PADDLE_WITH_ASCEND_CL
using NpuOpRunner = paddle::operators::NpuOpRunner;

constexpr int FLOAT_STATUS_SIZE = 8;

407 408
static phi::DenseTensor& npu_float_status() {
  static phi::DenseTensor float_status;
409 410 411 412
  return float_status;
}

void NPUAllocAndClearFloatStatus(const framework::OperatorBase& op,
413
                                 const framework::Scope& scope,
414 415 416 417 418 419 420 421 422 423 424 425 426 427
                                 const platform::Place& place) {
  if (!platform::is_npu_place(place)) return;

  std::call_once(white_list_init_flag, InitWhiteListFormEnv);
  if (IsSkipOp(op)) return;

  auto* dev_ctx = reinterpret_cast<platform::NPUDeviceContext*>(
      platform::DeviceContextPool::Instance().Get(place));
  auto stream = dev_ctx->stream();

  auto& flag = npu_float_status();
  flag.mutable_data<float>({FLOAT_STATUS_SIZE}, place);
  NpuOpRunner("NPUAllocFloatStatus", {}, {flag}).Run(stream);

428
  phi::DenseTensor tmp;
429 430 431 432
  tmp.mutable_data<float>({FLOAT_STATUS_SIZE}, place);
  NpuOpRunner("NPUClearFloatStatus", {tmp}, {flag}).Run(stream);
}

433 434
void PrintNpuVarInfo(const std::string& op_type,
                     const std::string& var_name,
435 436
                     const framework::Variable* var,
                     const platform::Place& place) {
437
  const phi::DenseTensor* tensor{nullptr};
438 439
  if (var->IsType<phi::DenseTensor>()) {
    tensor = &var->Get<phi::DenseTensor>();
440 441
  } else if (var->IsType<phi::SelectedRows>()) {
    tensor = &var->Get<phi::SelectedRows>().value();
442 443 444 445 446
  } else {
    VLOG(10) << var_name << " var_name need not to check";
    return;
  }

447 448 449 450
  if ((framework::TransToProtoVarType(tensor->dtype()) !=
       proto::VarType::FP32) &&
      (framework::TransToProtoVarType(tensor->dtype()) !=
       proto::VarType::FP16)) {
451 452 453 454 455 456 457 458 459 460 461
    return;
  }

  if (tensor->memory_size() == 0) {
    VLOG(10) << var_name << " var_name need not to check, size == 0";
    return;
  }

  VLOG(10) << "begin check " << op_type << " var_name:" << var_name
           << ", place:" << tensor->place() << ", numel:" << tensor->numel();

462
  phi::DenseTensor cpu_tensor;
463
  cpu_tensor.Resize(tensor->dims());
464
  cpu_tensor.mutable_data(platform::CPUPlace(), tensor->dtype());
465 466 467 468 469
  framework::TensorCopySync(*tensor, platform::CPUPlace(), &cpu_tensor);

  LOG(WARNING) << "print [" << var_name << "] tensor info:";
  // use env strategy control in future, -1=print_all.
  int print_num = 3;
470
  if (framework::TransToProtoVarType(tensor->dtype()) == proto::VarType::FP32) {
471 472
    const float* value = cpu_tensor.data<float>();
    PrintNanInf(value, tensor->numel(), print_num, op_type, var_name, false);
473 474
  } else if (framework::TransToProtoVarType(tensor->dtype()) ==
             proto::VarType::FP16) {
475 476 477 478 479 480 481
    const paddle::platform::float16* value =
        cpu_tensor.data<paddle::platform::float16>();
    PrintNanInf(value, tensor->numel(), print_num, op_type, var_name, false);
  }
}

void PrintNPUOpValueInfo(const framework::OperatorBase& op,
482
                         const framework::Scope& scope,
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
                         const platform::Place& place) {
  LOG(WARNING) << "There are `nan` or `inf` in operator (" << op.Type()
               << "), here we print some tensor value info of this op.";
  for (auto& vname : op.InputVars()) {
    auto* var = scope.FindVar(vname);
    if (var == nullptr) continue;
    PrintNpuVarInfo(op.Type(), vname, var, place);
  }

  for (auto& vname : op.OutputVars(true)) {
    auto* var = scope.FindVar(vname);
    if (var == nullptr) continue;
    PrintNpuVarInfo(op.Type(), vname, var, place);
  }
}

static void NPUCheckOpHasNanOrInf(const framework::OperatorBase& op,
500
                                  const framework::Scope& scope,
501 502 503 504 505 506 507 508
                                  const platform::Place& place) {
  if (!platform::is_npu_place(place)) return;

  auto* dev_ctx = reinterpret_cast<platform::NPUDeviceContext*>(
      platform::DeviceContextPool::Instance().Get(place));
  auto stream = dev_ctx->stream();

  auto& flag = npu_float_status();
509
  phi::DenseTensor tmp;
510 511 512 513 514
  tmp.mutable_data<float>({FLOAT_STATUS_SIZE}, place);
  // NPUGetFloatStatus updates data on input in-place.
  // tmp is only placeholder.
  NpuOpRunner("NPUGetFloatStatus", {flag}, {tmp}).Run(stream);

515
  phi::DenseTensor cpu_tensor;
516 517 518 519 520 521 522 523 524 525 526 527
  auto cpu_place = platform::CPUPlace();
  float* cpu_data = static_cast<float*>(
      cpu_tensor.mutable_data<float>({FLOAT_STATUS_SIZE}, cpu_place));

  framework::TensorCopySync(flag, cpu_place, &cpu_tensor);
  float sum = 0.0;
  for (int i = 0; i < FLOAT_STATUS_SIZE; ++i) {
    sum += cpu_data[i];
  }

  if (sum >= 1.0) PrintNPUOpValueInfo(op, scope, place);

528 529
  PADDLE_ENFORCE_LT(sum,
                    1.0,
530 531
                    platform::errors::PreconditionNotMet(
                        "Operator %s contains Nan/Inf.", op.Type()));
532 533 534
}
#endif

W
WangXi 已提交
535
void CheckOpHasNanOrInf(const framework::OperatorBase& op,
536
                        const framework::Scope& exec_scope,
W
WangXi 已提交
537 538 539 540 541
                        const platform::Place& place) {
  std::call_once(white_list_init_flag, InitWhiteListFormEnv);

  if (IsSkipOp(op)) return;

542 543 544 545 546 547 548
#ifdef PADDLE_WITH_ASCEND_CL
  if (platform::is_npu_place(place)) {
    NPUCheckOpHasNanOrInf(op, exec_scope, place);
    return;
  }
#endif

W
WangXi 已提交
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
  if (op_var_nan_inf_white_list().count(op.Type()) == 0) {
    // NOTE. vname may destruct in the end of this func.
    for (auto& vname : op.OutputVars(true)) {
      auto* var = exec_scope.FindVar(vname);
      if (var == nullptr) continue;
      CheckVarHasNanOrInf(op.Type(), exec_scope, vname, place);
    }
  } else {
    for (auto& vname : op.OutputVars(true)) {
      bool need_check = true;
      for (auto& white_vname : op_var_nan_inf_white_list().at(op.Type())) {
        if (vname.find(white_vname) != std::string::npos) {
          need_check = false;
          break;
        }
      }
      if (!need_check) continue;
      auto* var = exec_scope.FindVar(vname);
      if (var == nullptr) continue;
      CheckVarHasNanOrInf(op.Type(), exec_scope, vname, place);
    }
  }
}

}  // namespace details
}  // namespace framework
}  // namespace paddle