beam_search_decode_op_xpu_test.cc 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/beam_search_decode_op_xpu.h"

#include "gtest/gtest.h"

using CPUPlace = paddle::platform::CPUPlace;
using XPUPlace = paddle::platform::XPUPlace;
using LoD = paddle::framework::LoD;
using LoDTensorArray = paddle::framework::LoDTensorArray;

template <typename T>
using BeamSearchDecoder = paddle::operators::BeamSearchDecoder<T>;
template <typename T>
using Sentence = paddle::operators::Sentence<T>;
template <typename T>
using SentenceVector = paddle::operators::SentenceVector<T>;

namespace paddle {
namespace test {

34
template <typename T>
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
void GenerateXPUExample(const std::vector<size_t>& level_0,
                        const std::vector<size_t>& level_1,
                        const std::vector<int>& data,
                        LoDTensorArray* ids,
                        LoDTensorArray* scores) {
  PADDLE_ENFORCE_EQ(level_0.back(),
                    level_1.size() - 1,
                    platform::errors::InvalidArgument(
                        "source level is used to describe candidate set"
                        ", so it's element should less than levle_1 length. "
                        "And the value of source"
                        "level is %d. ",
                        level_1.size() - 1));
  PADDLE_ENFORCE_EQ(level_1.back(),
                    data.size(),
                    platform::errors::InvalidArgument(
                        "the lowest level is used to describe data"
                        ", so it's last element should be data length %d. ",
                        data.size()));

  CPUPlace place;
  int XPU_PlaceNo = 0;
  if (std::getenv("FLAGS_selected_xpus") != nullptr)
    XPU_PlaceNo = atoi(std::getenv("FLAGS_selected_xpus"));
  else if (std::getenv("XPU_VISIBLE_DEVICES") != nullptr)
    XPU_PlaceNo = atoi(std::getenv("XPU_VISIBLE_DEVICES"));

  XPUPlace xpu_place(XPU_PlaceNo);

  LoD lod;
  lod.push_back(level_0);
  lod.push_back(level_1);

  // Ids
69
  phi::DenseTensor tensor_id_cpu;
70 71 72 73 74 75 76 77
  tensor_id_cpu.set_lod(lod);
  tensor_id_cpu.Resize({static_cast<int64_t>(data.size())});
  // malloc memory
  int64_t* id_cpu_ptr = tensor_id_cpu.mutable_data<int64_t>(place);
  for (size_t i = 0; i < data.size(); ++i) {
    id_cpu_ptr[i] = static_cast<int64_t>(data.at(i));
  }

78
  phi::DenseTensor tensor_id;
79
  const phi::DenseTensorMeta meta_data_id(phi::DataType::INT64,
80 81 82 83 84 85 86 87 88 89 90 91
                                          tensor_id_cpu.dims());
  tensor_id.set_meta(meta_data_id);
  tensor_id.set_lod(lod);

  int64_t* id_ptr = tensor_id.mutable_data<int64_t>(xpu_place);
  paddle::memory::Copy(paddle::platform::XPUPlace(XPU_PlaceNo),
                       id_ptr,
                       paddle::platform::CPUPlace(),
                       id_cpu_ptr,
                       tensor_id_cpu.numel() * sizeof(int64_t));

  // Scores
92
  phi::DenseTensor tensor_score_cpu;
93 94 95
  tensor_score_cpu.set_lod(lod);
  tensor_score_cpu.Resize({static_cast<int64_t>(data.size())});
  // malloc memory
96
  T* score_cpu_ptr = tensor_score_cpu.mutable_data<T>(place);
97
  for (size_t i = 0; i < data.size(); ++i) {
98
    score_cpu_ptr[i] = static_cast<T>(data.at(i));
99 100
  }

101
  phi::DenseTensor tensor_score;
102 103

  if (std::is_same<float, T>::value) {
104 105
    const phi::DenseTensorMeta meta_data_score(phi::DataType::FLOAT32,
                                               tensor_score_cpu.dims());
106 107
    tensor_score.set_meta(meta_data_score);
  } else if (std::is_same<double, T>::value) {
108 109
    const phi::DenseTensorMeta meta_data_score(phi::DataType::FLOAT64,
                                               tensor_score_cpu.dims());
110 111
    tensor_score.set_meta(meta_data_score);
  } else if (std::is_same<paddle::platform::float16, T>::value) {
112 113
    const phi::DenseTensorMeta meta_data_score(phi::DataType::FLOAT16,
                                               tensor_score_cpu.dims());
114 115
    tensor_score.set_meta(meta_data_score);
  } else if (std::is_same<int, T>::value) {
116 117
    const phi::DenseTensorMeta meta_data_score(phi::DataType::INT32,
                                               tensor_score_cpu.dims());
118 119
    tensor_score.set_meta(meta_data_score);
  } else if (std::is_same<int64_t, T>::value) {
120 121
    const phi::DenseTensorMeta meta_data_score(phi::DataType::INT64,
                                               tensor_score_cpu.dims());
122 123 124
    tensor_score.set_meta(meta_data_score);
  }

125 126
  tensor_score.set_lod(lod);

127 128
  T* score_ptr = tensor_score.mutable_data<T>(xpu_place);

129 130 131 132
  paddle::memory::Copy(paddle::platform::XPUPlace(XPU_PlaceNo),
                       score_ptr,
                       paddle::platform::CPUPlace(),
                       score_cpu_ptr,
133
                       tensor_score_cpu.numel() * sizeof(T));
134 135 136 137 138

  ids->push_back(tensor_id);
  scores->push_back(tensor_score);
}

139 140
template <typename T>
void BeamSearchDecodeTestByXPUFrame() {
141 142 143 144
  CPUPlace place;

  // Construct sample data with 5 steps and 2 source sentences
  // beam_size = 2, start_id = 0, end_id = 1
145

146 147 148
  LoDTensorArray ids;
  LoDTensorArray scores;

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
  GenerateXPUExample<T>(std::vector<size_t>{0, 1, 2},
                        std::vector<size_t>{0, 1, 2},
                        std::vector<int>{0, 0},
                        &ids,
                        &scores);  // start with start_id
  GenerateXPUExample<T>(std::vector<size_t>{0, 1, 2},
                        std::vector<size_t>{0, 2, 4},
                        std::vector<int>{2, 3, 4, 5},
                        &ids,
                        &scores);
  GenerateXPUExample<T>(std::vector<size_t>{0, 2, 4},
                        std::vector<size_t>{0, 2, 2, 4, 4},
                        std::vector<int>{3, 1, 5, 4},
                        &ids,
                        &scores);
  GenerateXPUExample<T>(std::vector<size_t>{0, 2, 4},
                        std::vector<size_t>{0, 1, 2, 3, 4},
                        std::vector<int>{1, 1, 3, 5},
                        &ids,
                        &scores);
  GenerateXPUExample<T>(
170 171 172 173 174 175 176 177 178 179
      std::vector<size_t>{0, 2, 4},
      std::vector<size_t>{0, 0, 0, 2, 2},  // the branchs of the first source
                                           // sentence are pruned since finished
      std::vector<int>{5, 1},
      &ids,
      &scores);

  ASSERT_EQ(ids.size(), 5UL);
  ASSERT_EQ(scores.size(), 5UL);

180 181
  phi::DenseTensor id_tensor_cpu;
  phi::DenseTensor score_tensor_cpu;
182 183 184

  paddle::operators::BeamSearchDecodeXPUFunctor bs_xpu(
      ids, scores, &id_tensor_cpu, &score_tensor_cpu, 2, 1);
185
  bs_xpu.apply_xpu<T>();
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

  LoD lod = id_tensor_cpu.lod();
  std::vector<size_t> expect_source_lod = {0, 2, 4};
  ASSERT_EQ(lod[0], expect_source_lod);

  std::vector<size_t> expect_sentence_lod = {0, 4, 7, 12, 17};
  ASSERT_EQ(lod[1], expect_sentence_lod);

  std::vector<int> expect_data = {
      0, 2, 3, 1, 0, 2, 1, 0, 4, 5, 3, 5, 0, 4, 5, 3, 1};
  ASSERT_EQ(id_tensor_cpu.dims()[0], static_cast<int64_t>(expect_data.size()));

  for (size_t i = 0; i < expect_data.size(); ++i) {
    ASSERT_EQ(id_tensor_cpu.data<int64_t>()[i],
              static_cast<int64_t>(expect_data[i]));
  }

  for (int64_t i = 0; i < id_tensor_cpu.dims()[0]; ++i) {
204 205
    ASSERT_EQ(score_tensor_cpu.data<T>()[i],
              static_cast<T>(id_tensor_cpu.data<int64_t>()[i]));
206 207
  }
}
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230

}  // namespace test
}  // namespace paddle

TEST(BeamSearchDecodeOpXPU, Backtrace_XPU_Float) {
  paddle::test::BeamSearchDecodeTestByXPUFrame<float>();
}

TEST(BeamSearchDecodeOpXPU, Backtrace_XPU_Float16) {
  paddle::test::BeamSearchDecodeTestByXPUFrame<paddle::platform::float16>();
}

TEST(BeamSearchDecodeOpXPU, Backtrace_XPU_Int) {
  paddle::test::BeamSearchDecodeTestByXPUFrame<int>();
}

TEST(BeamSearchDecodeOpXPU, Backtrace_XPU_Int64) {
  paddle::test::BeamSearchDecodeTestByXPUFrame<int64_t>();
}

TEST(BeamSearchDecodeOpXPU, Backtrace_XPU_Double) {
  paddle::test::BeamSearchDecodeTestByXPUFrame<double>();
}