adagrad_op.h 2.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

template <typename Place, typename T>
class AdagradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
K
Kexin Zhao 已提交
26 27
    auto param_out_tensor = ctx.Output<framework::Tensor>("ParamOut");
    auto moment_out_tensor = ctx.Output<framework::Tensor>("MomentOut");
28

K
Kexin Zhao 已提交
29 30
    param_out_tensor->mutable_data<T>(ctx.GetPlace());
    moment_out_tensor->mutable_data<T>(ctx.GetPlace());
31 32 33

    float epsilon = ctx.Attr<float>("epsilon");

K
Kexin Zhao 已提交
34 35 36 37 38 39 40 41 42 43 44
    auto param = framework::EigenVector<T>::Flatten(
        *ctx.Input<framework::Tensor>("Param"));
    auto grad = framework::EigenVector<T>::Flatten(
        *ctx.Input<framework::Tensor>("Grad"));
    auto moment = framework::EigenVector<T>::Flatten(
        *ctx.Input<framework::Tensor>("Moment"));
    auto lr = framework::EigenVector<T>::Flatten(
        *ctx.Input<framework::Tensor>("LearningRate"));

    auto param_out = framework::EigenVector<T>::Flatten(*param_out_tensor);
    auto moment_out = framework::EigenVector<T>::Flatten(*moment_out_tensor);
45 46
    auto place = ctx.GetEigenDevice<Place>();

K
Kexin Zhao 已提交
47 48 49 50
    moment_out.device(place) = moment + grad * grad;
    Eigen::DSizes<int, 1> m_dsize(moment_out_tensor->numel());
    param_out.device(place) =
        param - lr.broadcast(m_dsize) * grad / (moment_out.sqrt() + epsilon);
51 52 53 54 55
  }
};

}  // namespace operators
}  // namespace paddle