test_sparseMatrixCompare.cpp 5.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#ifdef PADDLE_WITH_CUDA
Z
zhangjinchao01 已提交
16 17 18 19
/// This unittest checks GpuSparseMatrix/CpuSparseMatrix get same result,
//  so disable when
/// only cpu version.

Y
Yu Yang 已提交
20
#include <gtest/gtest.h>
Z
zhangjinchao01 已提交
21
#include "paddle/math/Matrix.h"
Y
Yu Yang 已提交
22
#include "paddle/utils/Util.h"
Z
zhangjinchao01 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
#include "test_matrixUtil.h"

using namespace paddle;  // NOLINT
using namespace std;     // NOLINT

static inline int uniformRandom(int n) { return n == 0 ? 0 : rand() % n; }

void testSpMatrixAddBias(int M, int N, real rate, real scale) {
  int nnz = M * N * rate;

  MatrixPtr cpuA(new CpuSparseMatrix(M, N, nnz));
  MatrixPtr cpuB = std::make_shared<CpuMatrix>(1, N);

  MatrixPtr gpuA(new GpuSparseMatrix(M, N, nnz));
  MatrixPtr gpuB = std::make_shared<GpuMatrix>(1, N);

  cpuA->randomizeUniform();
  cpuB->randomizeUniform();

  hl_stream_t stream(HPPL_STREAM_1);
  gpuA->copyFrom(*cpuA, stream);
  gpuB->copyFrom(*cpuB, stream);
  hl_stream_synchronize(stream);

  cpuA->addBias(*cpuB, scale);
  gpuA->addBias(*gpuB, scale);

  MatrixPtr outputCheck(new CpuSparseMatrix(M, N, nnz));
  outputCheck->copyFrom(*gpuA, stream);
  hl_stream_synchronize(stream);
  checkSMatrixEqual2(std::dynamic_pointer_cast<CpuSparseMatrix>(cpuA),
                     std::dynamic_pointer_cast<CpuSparseMatrix>(outputCheck));
}

void testSpMatrixAddDense(int M, int N, real rate) {  // add3
  int nnz = M * N * rate;

  MatrixPtr cpuA(new CpuSparseMatrix(M, N, nnz));
  MatrixPtr cpuB = std::make_shared<CpuMatrix>(M, N);

  MatrixPtr gpuA(new GpuSparseMatrix(M, N, nnz));
  MatrixPtr gpuB = std::make_shared<GpuMatrix>(M, N);

  cpuA->randomizeUniform();
  cpuB->randomizeUniform();

  hl_stream_t stream(HPPL_STREAM_3);
  gpuA->copyFrom(*cpuA, stream);
  gpuB->copyFrom(*cpuB, stream);
  hl_stream_synchronize(stream);

  cpuA->add3(cpuB);
  gpuA->add3(gpuB);

  MatrixPtr outputCheck(new CpuSparseMatrix(M, N, nnz));
  outputCheck->copyFrom(*gpuA, stream);
  hl_stream_synchronize(stream);
  checkSMatrixEqual2(std::dynamic_pointer_cast<CpuSparseMatrix>(cpuA),
                     std::dynamic_pointer_cast<CpuSparseMatrix>(outputCheck));
}

void testSpMatrixMul(int M, int N, int K, real rate) {
  int nnz = M * N * rate;

  MatrixPtr cpuA = std::make_shared<CpuMatrix>(M, K);
  MatrixPtr cpuB = std::make_shared<CpuMatrix>(N, K);
  MatrixPtr cpuC(new CpuSparseMatrix(M, N, nnz));

  MatrixPtr gpuA = std::make_shared<GpuMatrix>(M, K);
  MatrixPtr gpuB = std::make_shared<GpuMatrix>(N, K);
  MatrixPtr gpuC(new GpuSparseMatrix(M, N, nnz));

  cpuA->randomizeUniform();
  cpuB->randomizeUniform();
  cpuC->randomizeUniform();

  hl_stream_t stream(HPPL_STREAM_3);
  gpuA->copyFrom(*cpuA, stream);
  gpuB->copyFrom(*cpuB, stream);
  gpuC->copyFrom(*cpuC, stream);
  hl_stream_synchronize(stream);

105 106
  cpuC->mul(*cpuA, *cpuB->getTranspose(), 1, 1);
  gpuC->mul(*gpuA, *gpuB->getTranspose(), 1, 1);
Z
zhangjinchao01 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

  MatrixPtr outputCheck(new CpuSparseMatrix(M, N, nnz));
  outputCheck->copyFrom(*gpuC, stream);
  hl_stream_synchronize(stream);
  checkSMatrixErr(std::dynamic_pointer_cast<CpuSparseMatrix>(cpuC),
                  std::dynamic_pointer_cast<CpuSparseMatrix>(outputCheck));
}

void testSpMatrixCollectBias(int M, int N, real rate) {
  int nnz = M * N * rate;
  LOG(INFO) << "nnz=" << nnz;

  MatrixPtr cpuA(new CpuSparseMatrix(M, N, nnz));
  MatrixPtr cpuB = std::make_shared<CpuMatrix>(1, N);

  MatrixPtr gpuA(new GpuSparseMatrix(M, N, nnz));
  MatrixPtr gpuB = std::make_shared<GpuMatrix>(1, N);

  cpuA->randomizeUniform();
  cpuB->randomizeUniform();

  hl_stream_t stream(HPPL_STREAM_3);
  gpuA->copyFrom(*cpuA, stream);
  gpuB->copyFrom(*cpuB, stream);
  hl_stream_synchronize(stream);

  cpuB->collectBias(*cpuA, 1);
  gpuB->collectBias(*gpuA, 1);

  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(1, N);
  outputCheck->copyFrom(*gpuB, stream);
  hl_stream_synchronize(stream);
  checkMatrixErr(*cpuB, *outputCheck);
}

TEST(SMatrix, sMatrixOp) {
  for (auto height : {1, 11, 200}) {
    for (auto width : {200, 2048, 20480}) {
      VLOG(3) << " height=" << height << " width=" << width;
      for (auto rate : {0.02, 0.1}) {
        testSpMatrixAddDense(height, width, rate);
        testSpMatrixAddBias(height, width, rate, 1.0);
      }
    }
  }
}

TEST(SMatrix, sMatrixMul) {
  for (auto M : {1, 40, 128, 200}) {
    for (auto N : {100, 2000, 20480}) {
      for (auto K : {100, 512, 1024}) {
158
        VLOG(3) << " M=" << M << " N=" << N << " K=" << K;
Z
zhangjinchao01 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
        testSpMatrixMul(M, N, K, 0.05);
      }
    }
  }
}

TEST(SMatrix, sMatrixCollectBias) {
  for (auto height : {1, 128, 200}) {
    for (auto width : {100, 2048, 20480}) {
      VLOG(3) << " height=" << height << " width=" << width;
      testSpMatrixCollectBias(height, width, 0.1);
    }
  }
}

#endif