test_fold_op.py 8.9 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16 17

import numpy as np
X
xiaoting 已提交
18
from op_test import OpTest
19

X
xiaoting 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
import paddle
import paddle.fluid as fluid
from paddle.fluid import core

paddle.enable_static()


class TestFoldOp(OpTest):
    """
    This is for test on fold Op
    """

    def init_data(self):
        self.batch_size = 3
        self.input_channels = 3 * 2 * 2
        self.length = 12
        self.kernel_sizes = [2, 2]
        self.strides = [1, 1]
        self.paddings = [0, 0, 0, 0]
        self.dilations = [1, 1]
        self.output_sizes = [4, 5]
        input_shape = [self.batch_size, self.input_channels, self.length]
        self.x = np.random.rand(*input_shape).astype(np.float64)

    def calc_fold(self):
        output_shape = [0] * 4
        output_shape[0] = self.batch_size
47 48 49
        output_shape[1] = int(
            self.input_channels / (self.kernel_sizes[0] * self.kernel_sizes[1])
        )
X
xiaoting 已提交
50 51 52 53
        output_shape[2] = self.output_sizes[0]
        output_shape[3] = self.output_sizes[1]
        dkernel_h = self.dilations[0] * (self.kernel_sizes[0] - 1) + 1
        dkernel_w = self.dilations[1] * (self.kernel_sizes[1] - 1) + 1
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
        col_height = (
            int(
                (
                    self.output_sizes[0]
                    + self.paddings[0]
                    + self.paddings[2]
                    - dkernel_h
                )
                / self.strides[0]
            )
            + 1
        )
        col_width = (
            int(
                (
                    self.output_sizes[1]
                    + self.paddings[1]
                    + self.paddings[3]
                    - dkernel_w
                )
                / self.strides[1]
            )
            + 1
        )
X
xiaoting 已提交
78
        output = np.zeros(output_shape).astype(np.float64)
79
        # ------------- calculate output ------------- #
X
xiaoting 已提交
80 81 82 83
        for b in range(output_shape[0]):
            for c in range(self.input_channels):
                w_offset = int(c % self.kernel_sizes[1])
                h_offset = int(
84 85
                    (c / self.kernel_sizes[1]) % self.kernel_sizes[0]
                )
X
xiaoting 已提交
86 87
                c_out = int(c / self.kernel_sizes[0] / self.kernel_sizes[1])
                for h in range(col_height):
88 89 90 91 92
                    h_out = int(
                        h * self.strides[0]
                        - self.paddings[0]
                        + h_offset * self.dilations[0]
                    )
X
xiaoting 已提交
93
                    for w in range(col_width):
94 95 96 97 98
                        w_out = int(
                            w * self.strides[1]
                            - self.paddings[1]
                            + w_offset * self.dilations[1]
                        )
X
xiaoting 已提交
99
                        if (h_out >= 0 and h_out < self.output_sizes[0]) and (
100 101 102 103 104
                            w_out >= 0 and w_out < self.output_sizes[1]
                        ):
                            output[b, c_out, h_out, w_out] += self.x[
                                b, c, w + col_width * h
                            ]
X
xiaoting 已提交
105 106 107 108 109 110 111 112 113 114 115 116

        self.outputs = output

    def set_data(self):
        self.init_data()
        self.calc_fold()
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x)}
        self.attrs = {
            'kernel_sizes': self.kernel_sizes,
            'paddings': self.paddings,
            'dilations': self.dilations,
            'strides': self.strides,
117
            'output_sizes': self.output_sizes,
X
xiaoting 已提交
118 119 120 121 122
        }
        self.outputs = {'Y': self.outputs}

    def setUp(self):
        self.op_type = 'fold'
X
xiaoting 已提交
123
        self.python_api = paddle.nn.functional.fold
X
xiaoting 已提交
124 125 126
        self.set_data()

    def test_check_output(self):
X
xiaoting 已提交
127
        self.check_output(check_eager=True)
X
xiaoting 已提交
128 129

    def test_check_grad(self):
X
xiaoting 已提交
130
        self.check_grad(['X'], 'Y', check_eager=True)
X
xiaoting 已提交
131 132


X
xiaoting 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146
class TestFoldshape(TestFoldOp):
    def init_data(self):
        self.batch_size = 8
        self.input_channels = 3 * 3 * 3
        self.length = 6
        self.kernel_sizes = [3, 3]
        self.strides = [1, 1]
        self.paddings = [0, 0, 0, 0]
        self.dilations = [1, 1]
        self.output_sizes = [4, 5]
        input_shape = [self.batch_size, self.input_channels, self.length]
        self.x = np.random.rand(*input_shape).astype(np.float64)


X
xiaoting 已提交
147 148
class TestFoldAPI(TestFoldOp):

149
    # This is for test on paddle.nn.Fold
X
xiaoting 已提交
150 151 152

    def setUp(self):
        self.op_type = 'fold'
X
xiaoting 已提交
153
        self.python_api = paddle.nn.functional.fold
X
xiaoting 已提交
154 155 156 157 158 159 160 161 162 163 164 165
        self.set_data()
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def test_api(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                input = paddle.to_tensor(self.x)
                m = paddle.nn.Fold(**self.attrs)
                m.eval()
                result = m(input)
166 167 168
                np.testing.assert_allclose(
                    result.numpy(), self.outputs['Y'], rtol=1e-05
                )
X
xiaoting 已提交
169 170 171 172 173 174 175 176

    def test_info(self):
        str(paddle.nn.Fold(**self.attrs))


class TestFoldOpError(unittest.TestCase):
    def test_errors(self):
        from paddle.fluid.framework import Program, program_guard
177
        from paddle.nn.functional import fold
178

X
xiaoting 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
        with program_guard(Program(), Program()):

            def test_input_shape():
                # input_shpae must be 3-D
                x = paddle.randn(shape=[2, 3, 6, 7], dtype="float32")
                out = fold(x, output_sizes=[2, 3], kernel_sizes=[2, 2])

            def test_kernel_shape():
                # kernel_size must be 2
                x = paddle.randn(shape=[2, 6, 6], dtype="float32")
                out = fold(x, output_sizes=[2, 3], kernel_sizes=[2, 2, 3])

            def test_padding_shape():
                # padding_size must be 2 or 4
                x = paddle.randn(shape=[2, 6, 6], dtype="float32")
194 195 196 197 198 199
                out = fold(
                    x,
                    output_sizes=[2, 3],
                    kernel_sizes=[2, 2],
                    paddings=[2, 2, 3],
                )
X
xiaoting 已提交
200 201

            def test_dilations_shape():
202
                # dialtions_size must be 2
X
xiaoting 已提交
203
                x = paddle.randn(shape=[2, 6, 6], dtype="float32")
204 205 206 207 208 209
                out = fold(
                    x,
                    output_sizes=[2, 3],
                    kernel_sizes=[2, 2],
                    dilations=[2, 2, 3],
                )
X
xiaoting 已提交
210 211 212 213

            def test_strides_shape():
                # strids_size must be 2
                x = paddle.randn(shape=[2, 6, 6], dtype="float32")
214 215 216 217 218 219
                out = fold(
                    x,
                    output_sizes=[2, 3],
                    kernel_sizes=[2, 2],
                    strides=[2, 2, 3],
                )
X
xiaoting 已提交
220 221 222 223

            def test_output_size():
                # im_h * im_w must be L
                x = paddle.randn(shape=[2, 6, 6], dtype="float32")
224 225 226
                out = fold(
                    x, output_sizes=[6, 6], kernel_sizes=[2, 2], strides=[1, 1]
                )
X
xiaoting 已提交
227

X
xiaoting 已提交
228 229 230
            def test_output_size_2():
                # out_size must GT 1
                x = paddle.randn(shape=[2, 6, 6], dtype="float32")
231 232 233 234 235 236
                out = fold(
                    x,
                    output_sizes=[0.1, 0.2],
                    kernel_sizes=[2, 2],
                    strides=[1, 1],
                )
X
xiaoting 已提交
237

X
xiaoting 已提交
238 239 240
            def test_block_h_w():
                # test_block_h_w GT 0
                x = paddle.randn(shape=[2, 1, 1], dtype="float32")
241 242 243
                out = fold(
                    x, output_sizes=[1, 1], kernel_sizes=[2, 2], strides=1
                )
X
xiaoting 已提交
244 245 246

            def test_GT_0():
                x = paddle.randn(shape=[2, 1, 1], dtype="float32")
247 248 249 250 251 252 253 254
                out = fold(
                    x,
                    output_sizes=[0, 0],
                    kernel_sizes=[0, 0],
                    dilations=0,
                    paddings=[0, 0],
                    strides=0,
                )
X
xiaoting 已提交
255 256 257 258 259 260 261

            self.assertRaises(AssertionError, test_input_shape)
            self.assertRaises(AssertionError, test_kernel_shape)
            self.assertRaises(ValueError, test_padding_shape)
            self.assertRaises(AssertionError, test_dilations_shape)
            self.assertRaises(AssertionError, test_strides_shape)
            self.assertRaises(ValueError, test_output_size)
262
            self.assertRaises(TypeError, test_output_size_2)
X
xiaoting 已提交
263 264 265 266 267 268
            self.assertRaises(ValueError, test_block_h_w)
            self.assertRaises(ValueError, test_GT_0)


if __name__ == '__main__':
    unittest.main()