test_softmax_op.py 15.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
qijun 已提交
15
import unittest
16

Q
qijun 已提交
17
import numpy as np
18
from op_test import OpTest, convert_float_to_uint16
19

20
import paddle
21
import paddle.fluid as fluid
22
import paddle.fluid.core as core
23
import paddle.nn.functional as F
24 25

np.random.seed(10)
Q
qijun 已提交
26 27 28 29


def stable_softmax(x):
    """Compute the softmax of vector x in a numerically stable way."""
30 31
    # clip to shiftx, otherwise, when calc loss with
    # log(exp(shiftx)), may get log(0)=INF
32
    shiftx = (x - np.max(x)).clip(-64.0)
Q
qijun 已提交
33 34 35 36
    exps = np.exp(shiftx)
    return exps / np.sum(exps)


37 38 39 40 41 42 43 44 45
def ref_softmax(x, axis=None, dtype=None):
    x_t = x.copy()
    if dtype is not None:
        x_t = x_t.astype(dtype)
    if axis is None:
        axis = -1
    return np.apply_along_axis(stable_softmax, axis, x_t)


Q
qijun 已提交
46
class TestSoftmaxOp(OpTest):
F
fengjiayi 已提交
47 48 49
    def get_x_shape(self):
        return [10, 10]

D
dengkaipeng 已提交
50 51 52
    def get_axis(self):
        return -1

Q
qijun 已提交
53
    def setUp(self):
Q
fix bug  
qijun 已提交
54
        self.op_type = "softmax"
55
        self.use_cudnn = False
K
Kexin Zhao 已提交
56
        self.use_mkldnn = False
57 58
        # explicilty use float32 for ROCm, as MIOpen does not yet support float64
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
K
Kexin Zhao 已提交
59
        self.init_kernel_type()
F
fengjiayi 已提交
60
        self.shape = self.get_x_shape()
D
dengkaipeng 已提交
61
        self.axis = self.get_axis()
F
fengjiayi 已提交
62

63
        np.random.seed(0)
F
fengjiayi 已提交
64
        x = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
D
dengkaipeng 已提交
65
        out = np.apply_along_axis(stable_softmax, self.axis, x)
K
Kexin Zhao 已提交
66 67 68

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
69
        self.attrs = {
D
dengkaipeng 已提交
70
            'axis': self.axis,
71
            'use_cudnn': self.use_cudnn,
72
            'use_mkldnn': self.use_mkldnn,
73
        }
74

K
Kexin Zhao 已提交
75
    def init_kernel_type(self):
76
        pass
Q
qijun 已提交
77

Q
qijun 已提交
78
    def test_check_output(self):
79
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
80 81
        if self.use_cudnn:
            place = core.CUDAPlace(0)
82
            self.check_output_with_place(
83
                place, atol=1e-5, check_dygraph=(not self.use_mkldnn)
84
            )
85
        else:
86
            self.check_output(check_dygraph=(not self.use_mkldnn))
Q
qijun 已提交
87

Q
qijun 已提交
88
    def test_check_grad(self):
89
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
C
chengduo 已提交
90
        if self.use_cudnn or self.dtype == np.float16:
91
            place = core.CUDAPlace(0)
C
chengduo 已提交
92 93
            if core.is_float16_supported(place):
                self.check_grad_with_place(
94 95
                    place,
                    ["X"],
96 97
                    "Out",
                    max_relative_error=0.01,
98
                    check_dygraph=(not self.use_mkldnn),
99
                )
100
        else:
101 102 103 104
            self.check_grad(
                ["X"],
                "Out",
                max_relative_error=0.01,
105
                check_dygraph=(not self.use_mkldnn),
106
            )
107 108


109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
class TestSoftmaxOp_ZeroDim1(TestSoftmaxOp):
    def setUp(self):
        self.op_type = "softmax"
        self.use_cudnn = False
        self.use_mkldnn = False
        # explicilty use float32 for ROCm, as MIOpen does not yet support float64
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64

        np.random.seed(0)
        x = np.random.uniform(0.1, 1, []).astype(self.dtype)
        out = np.array(1.0).astype(self.dtype)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
        self.attrs = {
            'axis': -1,
            'use_cudnn': self.use_cudnn,
            'use_mkldnn': self.use_mkldnn,
        }


@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
class TestSoftmaxOp_ZeroDim2(TestSoftmaxOp):
    def setUp(self):
        self.op_type = "softmax"
        self.use_cudnn = True
        self.use_mkldnn = False
        # explicilty use float32 for ROCm, as MIOpen does not yet support float64
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64

        np.random.seed(0)
        x = np.random.uniform(0.1, 1, []).astype(self.dtype)
        out = np.array(1.0).astype(self.dtype)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
        self.attrs = {
            'axis': -1,
            'use_cudnn': self.use_cudnn,
            'use_mkldnn': self.use_mkldnn,
        }


F
fengjiayi 已提交
154 155 156 157 158
class TestSoftmaxOp2(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]


D
dengkaipeng 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
class TestSoftmaxOp3(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 0


class TestSoftmaxOp4(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 1


class TestSoftmaxOp5(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 2


183
class TestSoftmaxOp6(TestSoftmaxOp):
D
dengkaipeng 已提交
184 185 186 187 188 189 190
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 3


191 192 193
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
194
class TestSoftmaxCUDNNOp(TestSoftmaxOp):
K
Kexin Zhao 已提交
195 196 197 198
    def init_kernel_type(self):
        self.use_cudnn = True


199 200 201
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
F
fengjiayi 已提交
202 203 204 205 206
class TestSoftmaxCUDNNOp2(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]


207 208 209
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
G
GaoWei8 已提交
210 211 212 213 214 215 216 217
class TestSoftmaxCUDNNOp3(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 0


218 219 220
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
G
GaoWei8 已提交
221 222 223 224 225 226 227 228
class TestSoftmaxCUDNNOp4(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 1


229 230 231
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
D
dengkaipeng 已提交
232
class TestSoftmaxCUDNNOp5(TestSoftmaxCUDNNOp):
D
dengkaipeng 已提交
233 234 235
    def get_x_shape(self):
        return [2, 3, 4, 5]

G
GaoWei8 已提交
236 237 238 239
    def get_axis(self):
        return 2


240 241 242
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
G
GaoWei8 已提交
243 244 245 246
class TestSoftmaxCUDNNOp6(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

D
dengkaipeng 已提交
247
    def get_axis(self):
248
        return 3
D
dengkaipeng 已提交
249 250


251 252 253
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
G
GaoWei8 已提交
254 255 256 257 258
class TestSoftmaxCUDNNOp7(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]


259 260 261
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
G
GaoWei8 已提交
262 263 264 265 266 267 268 269
class TestSoftmaxCUDNNOp8(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 0


270 271 272
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
G
GaoWei8 已提交
273 274 275 276 277 278 279 280
class TestSoftmaxCUDNNOp9(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 1


281 282 283
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
G
GaoWei8 已提交
284 285 286 287 288 289 290 291
class TestSoftmaxCUDNNOp10(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 2


292 293 294
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
G
GaoWei8 已提交
295 296 297 298 299 300 301 302
class TestSoftmaxCUDNNOp11(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 3


303 304 305
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
G
GaoWei8 已提交
306 307 308 309 310 311 312 313
class TestSoftmaxCUDNNOp12(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 4


314 315 316
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
317 318 319 320 321 322 323 324 325 326
class TestSoftmaxFP16Op(TestSoftmaxOp):
    def init_kernel_type(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

C
chengduo 已提交
327 328 329 330
    # FIXME: If the x_shape is [10, 10], gradient failed.
    def test_check_grad(self):
        pass

331

332 333 334
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
Z
zhupengyang 已提交
335
class TestSoftmaxFP16Op2(TestSoftmaxFP16Op):
F
fengjiayi 已提交
336
    def get_x_shape(self):
Z
zhupengyang 已提交
337
        return [2, 3, 4, 10]
338

F
fengjiayi 已提交
339

340 341 342
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
K
Kexin Zhao 已提交
343 344
class TestSoftmaxFP16CUDNNOp(TestSoftmaxOp):
    def init_kernel_type(self):
345
        self.use_cudnn = True
K
Kexin Zhao 已提交
346 347 348 349 350 351 352
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
Q
Qiao Longfei 已提交
353 354


355 356 357
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
F
fengjiayi 已提交
358 359 360 361 362
class TestSoftmaxFP16CUDNNOp2(TestSoftmaxFP16CUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]


363 364 365
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
class TestSoftmaxBF16Op(OpTest):
    def setUp(self):
        self.op_type = "softmax"
        self.use_cudnn = self.init_cudnn()
        self.use_mkldnn = False
        self.dtype = np.uint16
        self.shape = [10, 10]
        self.axis = -1

        np.random.seed(0)
        x = np.random.uniform(0.1, 1, self.shape).astype(np.float32)
        out = np.apply_along_axis(stable_softmax, self.axis, x)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(x))
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}
        self.attrs = {
            'axis': self.axis,
            'use_cudnn': self.use_cudnn,
386
            'use_mkldnn': self.use_mkldnn,
387 388 389 390 391 392 393
        }

    def init_cudnn(self):
        return False

    def test_check_output(self):
        place = core.CUDAPlace(0)
394
        self.check_output_with_place(place, check_dygraph=(not self.use_mkldnn))
395 396 397

    def test_check_grad(self):
        place = core.CUDAPlace(0)
398 399 400 401 402
        self.check_grad_with_place(
            place,
            ["X"],
            "Out",
            numeric_grad_delta=0.05,
403
            check_dygraph=(not self.use_mkldnn),
404
        )
405 406 407


@unittest.skipIf(
408 409
    not core.is_compiled_with_cuda()
    or core.cudnn_version() < 8100
410
    or paddle.device.cuda.get_device_capability()[0] < 8,
411
    "only support compiled with CUDA and cudnn version need larger than 8.1.0 and device's compute capability is at least 8.0",
412
)
413 414 415 416 417
class TestSoftmaxBF16CUDNNOp(TestSoftmaxBF16Op):
    def init_cudnn(self):
        return True


418
class TestSoftmaxAPI(unittest.TestCase):
419
    def setUp(self):
420 421 422 423 424 425
        self.place = (
            paddle.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else paddle.CPUPlace()
        )
        self.x_np = np.random.uniform(-1.0, 1.0, [2, 3, 4, 5]).astype('float32')
426
        self.out_ref = np.apply_along_axis(stable_softmax, -1, self.x_np)
427 428 429 430
        self.executed_api()

    def executed_api(self):
        self.softmax = F.softmax
431

432 433
    def test_static_check(self):
        with paddle.static.program_guard(paddle.static.Program()):
434
            x = paddle.fluid.data('X', self.x_np.shape, 'float32')
435
            out1 = self.softmax(x)
436 437
            m = paddle.nn.Softmax()
            out2 = m(x)
438
            exe = paddle.static.Executor(self.place)
439 440 441
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softmax(self.x_np, axis=-1, dtype=None)
        for r in res:
442
            np.testing.assert_allclose(out_ref, r, rtol=1e-05)
443

444
    def test_dygraph_check(self):
445
        paddle.disable_static(self.place)
446

447
        x = paddle.to_tensor(self.x_np)
448 449
        out1 = self.softmax(x)
        x = paddle.to_tensor(self.x_np)
450 451 452 453
        m = paddle.nn.Softmax()
        out2 = m(x)
        out_ref = ref_softmax(self.x_np, axis=-1, dtype=None)
        for r in [out1, out2]:
454
            np.testing.assert_allclose(out_ref, r.numpy(), rtol=1e-05)
455

456 457
        out1 = self.softmax(x, axis=0)
        x = paddle.to_tensor(self.x_np)
458 459 460 461
        m = paddle.nn.Softmax(axis=0)
        out2 = m(x)
        out_ref = ref_softmax(self.x_np, axis=0, dtype=None)
        for r in [out1, out2]:
462
            np.testing.assert_allclose(out_ref, r.numpy(), rtol=1e-05)
463

464 465 466 467 468 469 470
        # explicilty use float32 for ROCm, as MIOpen does not yet support float64
        if core.is_compiled_with_rocm():
            out = self.softmax(x, dtype=np.float32)
            out_ref = ref_softmax(self.x_np, axis=-1, dtype=np.float32)
        else:
            out = self.softmax(x, dtype=np.float64)
            out_ref = ref_softmax(self.x_np, axis=-1, dtype=np.float64)
471
        np.testing.assert_allclose(out_ref, out.numpy(), rtol=1e-05)
472

473
        paddle.enable_static()
474 475

    def test_error(self):
476 477
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
478
            self.assertRaises(TypeError, self.softmax, 1)
479
            # The input dtype must be float16, float32, float64.
480 481 482
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[2, 3], dtype='int32'
            )
483
            self.assertRaises(TypeError, self.softmax, x_int32)
484
            # support the input dtype is float16
485 486 487
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[2, 3], dtype='float16'
            )
488 489 490
            self.softmax(x_fp16)


491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
class TestSoftmaxAPI_ZeroDim(unittest.TestCase):
    def test_dygraph(self):
        paddle.disable_static()
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        x = paddle.rand([])
        x.stop_gradient = False

        out = paddle.nn.functional.softmax(x)
        out.backward()
        self.assertEqual(x.shape, [])
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(out.shape, [])
        self.assertEqual(out.grad.shape, [])

        paddle.enable_static()

    def test_static(self):
        main_prog = fluid.Program()
        with fluid.program_guard(main_prog, fluid.Program()):
            x = paddle.rand([])
            x.stop_gradient = False
            out = paddle.nn.functional.softmax(x)
            fluid.backward.append_backward(out)

            # Test compile shape
            self.assertEqual(x.shape, ())
            self.assertEqual(out.shape, ())

            exe = fluid.Executor()
            result = exe.run(main_prog, fetch_list=[x, out])

            # Test runtime shape
            self.assertEqual(result[0].shape, ())
            self.assertEqual(result[1].shape, ())


527 528 529
class TestSoftmaxInplaceAPI(TestSoftmaxAPI):
    def executed_api(self):
        self.softmax = F.softmax_
530 531


C
caoying03 已提交
532
if __name__ == "__main__":
Q
qijun 已提交
533
    unittest.main()