test_dist_base.py 64.9 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import argparse
16
import ast
X
Xin Pan 已提交
17
import os
W
Wu Yi 已提交
18
import pickle
19
import random
20 21 22
import subprocess
import sys
import tempfile
23
import time
24 25 26
import unittest

import numpy as np
27 28

import paddle
29
import paddle.fluid as fluid
meteor135's avatar
meteor135 已提交
30
import paddle.incubate.distributed.fleet.role_maker as role_maker
31 32 33
from paddle.distributed.fleet.meta_optimizers import (
    RawProgramOptimizer as RawProgram,
)
34
from paddle.fluid import compiler
meteor135's avatar
meteor135 已提交
35 36 37 38
from paddle.incubate.distributed.fleet.collective import (
    DistributedStrategy,
    fleet,
)
39

Y
Yan Xu 已提交
40
RUN_STEP = 5
41
DEFAULT_BATCH_SIZE = 2
42
DIST_UT_PORT = 0
43

T
typhoonzero 已提交
44

45
def print_to_out(out_losses):
T
tianshuo78520a 已提交
46
    sys.stdout.buffer.write(pickle.dumps(out_losses))
47 48 49


def print_to_err(class_name, log_str):
50 51
    localtime = time.asctime(time.localtime(time.time()))
    print_str = localtime + "\t" + class_name + "\t" + log_str
T
tianshuo78520a 已提交
52
    sys.stderr.buffer.write(pickle.dumps(print_str))
G
guru4elephant 已提交
53 54


55 56 57 58
def eprint(*args, **kwargs):
    print(*args, file=sys.stderr, **kwargs)


59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
def _insert_comm_op(opt, loss, build_strategy=None):
    opt = RawProgram(opt)
    role = paddle.distributed.fleet.base.role_maker.PaddleCloudRoleMaker(
        is_collective=True
    )
    strategy = paddle.distributed.fleet.DistributedStrategy()
    if build_strategy is not None:
        strategy.build_strategy = build_strategy
    opt._set_basic_info(loss, role, opt, strategy)

    # following code is a copy of RawProgramOptimizer.minimize except init_comm_group
    opt.endpoints = opt.role_maker._get_trainer_endpoints()
    opt.current_endpoint = opt.endpoints[opt.role_maker._worker_index()]
    opt.rank = opt.role_maker._worker_index()
    opt.nranks = opt.role_maker._worker_num()
    startup_program = paddle.static.default_startup_program()
    opt.startup_program = startup_program

    block = loss.block
    program = block.program
    opt.main_program = program

    optimize_ops, params_grads = opt.inner_opt.minimize(loss, startup_program)

    opt.main_program = program
    if opt.nranks > 1:
        opt._transpile_main_program(loss)


88
class TestDistRunnerBase:
89 90 91 92 93 94 95 96
    def get_model(
        self,
        batch_size=DEFAULT_BATCH_SIZE,
        lr=0.1,
        single_device=False,
        use_dgc=False,
        dist_strategy=None,
    ):
T
typhoonzero 已提交
97
        raise NotImplementedError(
98 99
            "get_model should be implemented by child classes."
        )
T
typhoonzero 已提交
100

101
    @staticmethod
102 103 104 105 106 107 108 109 110 111 112
    def get_transpiler(
        trainer_id,
        main_program,
        pserver_endpoints,
        trainers,
        sync_mode,
        dc_asgd=False,
        current_endpoint=None,
        nccl_comm_num=1,
        hogwild_mode=False,
    ):
T
typhoonzero 已提交
113
        # NOTE: import fluid until runtime, or else forking processes will cause error.
114
        config = paddle.distributed.transpiler.DistributeTranspilerConfig()
W
Wu Yi 已提交
115
        config.enable_dc_asgd = dc_asgd
116
        config.sync_mode = sync_mode
T
tangwei12 已提交
117 118
        config.runtime_split_send_recv = hogwild_mode

119 120
        if nccl_comm_num > 1:
            config.nccl_comm_num = nccl_comm_num
121
        # config.runtime_split_send_recv = True
122
        t = paddle.distributed.transpiler.DistributeTranspiler(config=config)
123 124 125 126 127 128 129 130
        t.transpile(
            trainer_id=trainer_id,
            program=main_program,
            pservers=pserver_endpoints,
            trainers=trainers,
            sync_mode=sync_mode,
            current_endpoint=current_endpoint,
        )
T
typhoonzero 已提交
131 132
        return t

133 134 135 136 137
    @staticmethod
    def get_lr_scheduler(program):
        lr_sheduler = None
        if hasattr(program, 'lr_sheduler'):
            from paddle.optimizer.lr import LRScheduler
138

139 140 141 142
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
        return lr_sheduler

W
Wu Yi 已提交
143
    def run_pserver(self, args):
W
Wu Yi 已提交
144
        self.lr = args.lr
145
        self.get_model(batch_size=args.batch_size)
146
        # NOTE: pserver should not call memory optimize
T
tangwei12 已提交
147

148 149 150 151 152 153 154 155 156
        t = self.get_transpiler(
            trainer_id=args.trainer_id,
            main_program=fluid.default_main_program(),
            pserver_endpoints=args.endpoints,
            trainers=args.trainers,
            sync_mode=args.sync_mode,
            dc_asgd=args.dc_asgd,
            hogwild_mode=args.hogwild,
        )
W
Wu Yi 已提交
157
        pserver_prog = t.get_pserver_program(args.current_endpoint)
158 159 160
        startup_prog = t.get_startup_program(
            args.current_endpoint, pserver_prog
        )
Y
Yancey1989 已提交
161

T
typhoonzero 已提交
162 163 164
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
165
        print_to_err(type(self).__name__, "run pserver startup program done.")
T
typhoonzero 已提交
166
        exe.run(pserver_prog)
167
        print_to_err(type(self).__name__, "run pserver main program done.")
T
typhoonzero 已提交
168

169 170 171 172
    def run_pipeline_trainer(self, args):
        self.lr = args.lr

        dist_strategy = DistributedStrategy()
173 174 175 176 177 178 179 180 181 182 183
        (
            test_program,
            avg_cost,
            train_reader,
            test_reader,
            batch_acc,
            predict,
            data_loader,
        ) = self.get_model(
            batch_size=args.batch_size, dist_strategy=dist_strategy
        )
184 185 186 187 188 189 190 191 192 193 194 195 196

        device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        eprint(type(self).__name__, "device_id: %d." % device_id)
        place = fluid.CUDAPlace(device_id)

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        data_loader.set_sample_list_generator(train_reader, place)
        data_loader.start()
        print_to_err(type(self).__name__, "begin to train on trainer")
        out_losses = []
197 198 199

        main_program = fluid.default_main_program()
        lr_sheduler = self.get_lr_scheduler(main_program)
200
        for i in range(RUN_STEP):
201
            loss = exe.run(main_program, fetch_list=[avg_cost])
202 203 204
            loss = loss[0] if loss else None
            out_losses.append(loss)
            print_to_err(type(self).__name__, "run step %d finished" % i)
205 206 207
            if lr_sheduler is not None:
                lr_sheduler.step()

208
        data_loader.reset()
209 210
        print_to_err(type(self).__name__, "trainer run finished")

T
tianshuo78520a 已提交
211
        sys.stdout.buffer.write(pickle.dumps(out_losses))
212

213 214 215 216 217 218 219 220 221 222 223
    def run_use_fleet_api_20_trainer(self, args):
        """
        1. remove codes for DistributedStrategy and leave the DistributedStrategy part to get_model()
        2. to run with fleet 2.0 api, set flags _use_fleet_api and _use_fleet_api_20 to True
        3. for now, not support test for model save
        """
        assert args.update_method == "nccl2" or "bkcl"

        self.lr = args.lr
        print_to_err("use_fleet 2.0", "fleet.node_num:")

224 225 226 227 228 229 230 231
        (
            test_program,
            avg_cost,
            train_reader,
            test_reader,
            batch_acc,
            predict,
        ) = self.get_model(batch_size=args.batch_size)
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248

        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            raise ValueError(
                "fleet dygraph api must in paddlepaddle-xpu or paddlepaddle-gpu."
            )

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
249 250
            var
            for var in fluid.default_main_program().global_block().vars.values()
251 252 253 254 255 256 257 258 259 260 261 262 263
            if var.is_data
        ]

        eprint("feed_var_list:", feed_var_list)

        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
264 265 266 267
            if (
                paddle.distributed.get_world_size() == 1
                and args.update_method == 'gloo'
            ):  # Gloo single mode
X
xiongkun 已提交
268 269 270
                return origin_batch

            elif args.update_method != "local" and args.use_reader_alloc:
271 272 273 274 275 276 277 278 279 280
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

        print_to_err(type(self).__name__, "begin to train on trainer")
        out_losses = []
281
        for i in range(RUN_STEP):
282 283 284 285 286
            (loss,) = exe.run(
                fluid.default_main_program(),
                fetch_list=[avg_cost.name],
                feed=feeder.feed(get_data()),
            )
287 288 289 290 291
            out_losses.append(loss[0])
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
        print_to_err(type(self).__name__, "dist losses: {}".format(out_losses))

T
tianshuo78520a 已提交
292
        sys.stdout.buffer.write(pickle.dumps(out_losses))
293

294 295
    def run_use_fleet_api_trainer(self, args):
        assert args.update_method == "nccl2" or "bkcl"
296 297 298 299 300 301 302 303

        self.lr = args.lr

        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1

        dist_strategy = DistributedStrategy()
        dist_strategy.exec_strategy = exec_strategy
T
tangwei12 已提交
304
        dist_strategy.fuse_memory_size = 1  # MB
305
        dist_strategy.fuse_laryer_size = 1
306 307 308 309
        if args.use_local_sgd:
            dist_strategy.use_local_sgd = True
        if args.ut4grad_allreduce:
            dist_strategy._ut4grad_allreduce = True
310 311
        if args.sync_batch_norm:
            dist_strategy.sync_batch_norm = True
312 313 314

        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
315
        print_to_err("use_fleet", "fleet.node_num:")
T
tangwei12 已提交
316 317
        # "fleet.node_id:", fleet.node_id(),
        # "fleet.trainer_num:", fleet.worker_num())
318

319 320 321 322 323 324 325 326 327 328
        (
            test_program,
            avg_cost,
            train_reader,
            test_reader,
            batch_acc,
            predict,
        ) = self.get_model(
            batch_size=args.batch_size, dist_strategy=dist_strategy
        )
329 330 331 332

        trainer_prog = fleet._origin_program
        dist_prog = fleet.main_program

333 334 335 336 337 338 339 340 341 342
        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            raise ValueError(
                "fleet dygraph api must in paddlepaddle-xpu or paddlepaddle-gpu."
            )
343 344 345 346 347 348

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
349 350
            var
            for var in trainer_prog.global_block().vars.values()
351 352 353
            if var.is_data
        ]

354 355 356 357 358 359 360
        eprint("feed_var_list:", feed_var_list)

        # tmp add this code to pass python35 gcc8 CI
        # Fixme(gongweibao, wangxi), need fix fleet api program order
        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

361 362 363 364 365 366 367 368 369 370 371 372 373 374
        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
            if args.update_method != "local" and args.use_reader_alloc:
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

375
        print_to_err(type(self).__name__, "begin to train on trainer")
376
        out_losses = []
377
        for i in range(RUN_STEP):
378 379 380 381 382
            (loss,) = exe.run(
                dist_prog,
                fetch_list=[avg_cost.name],
                feed=feeder.feed(get_data()),
            )
383
            out_losses.append(loss[0])
384 385
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
386

T
tianshuo78520a 已提交
387
        sys.stdout.buffer.write(pickle.dumps(out_losses))
388

389 390 391
        if args.save_model:
            model_save_dir = "/tmp"
            if fleet.worker_index() == 0:
392 393 394 395 396 397 398 399 400 401 402 403
                model_save_dir_fluid = os.path.join(
                    model_save_dir, "fluid_persistables"
                )
                model_save_dir_fleet = os.path.join(
                    model_save_dir, "fleet_persistables"
                )
                infer_save_dir_fluid = os.path.join(
                    model_save_dir, "fluid_infer"
                )
                infer_save_dir_fleet = os.path.join(
                    model_save_dir, "fleet_infer"
                )
404
            else:
405 406 407 408 409 410 411 412 413 414 415 416
                model_save_dir_fluid = os.path.join(
                    model_save_dir, "fluid_persistables_2"
                )
                model_save_dir_fleet = os.path.join(
                    model_save_dir, "fleet_persistables_2"
                )
                infer_save_dir_fluid = os.path.join(
                    model_save_dir, "fluid_infer_2"
                )
                infer_save_dir_fleet = os.path.join(
                    model_save_dir, "fleet_infer_2"
                )
417
            paddle.distributed.io.save_persistables(
418 419
                exe, model_save_dir_fluid, fleet._origin_program
            )
420 421
            fleet.save_persistables(executor=exe, dirname=model_save_dir_fleet)
            feeded_var_names = [var.name for var in feed_var_list]
422 423 424 425 426 427 428 429 430 431
            fluid.io.save_inference_model(
                infer_save_dir_fluid,
                feeded_var_names,
                [avg_cost],
                exe,
                fleet._origin_program,
            )
            fleet.save_inference_model(
                exe, infer_save_dir_fleet, feeded_var_names, [avg_cost]
            )
432

433
    def run_trainer(self, args):
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
        from io import StringIO

        old_stdout = sys.stdout
        sys.stdout = StringIO()

        build_stra = fluid.BuildStrategy()
        # FIXME force disable enable_inplace and memory_optimize
        build_stra.enable_inplace = False
        build_stra.memory_optimize = False

        if args.fuse_all_reduce is not None:
            sys.stderr.write('fuse_all_reduce={}'.format(args.fuse_all_reduce))
            build_stra.fuse_all_reduce_ops = args.fuse_all_reduce

        if args.hogwild:
            build_stra.async_mode = True

        if args.enable_backward_deps:
            build_stra.enable_backward_optimizer_op_deps = True

        if args.use_reduce:
            build_stra.reduce_strategy = (
                fluid.BuildStrategy.ReduceStrategy.Reduce
            )
        else:
            build_stra.reduce_strategy = (
                fluid.BuildStrategy.ReduceStrategy.AllReduce
            )
        pass_builder = None
        if args.batch_merge_repeat > 1:
            pass_builder = build_stra._finalize_strategy_and_create_passes()
            mypass = pass_builder.insert_pass(0, "multi_batch_merge_pass")
            mypass.set("num_repeats", args.batch_merge_repeat)

        if (
            args.update_method == "nccl2"
            or args.update_method == "nccl2_reduce_layer"
        ):
            build_stra.num_trainers = len(args.endpoints.split(","))
            build_stra.trainer_id = args.trainer_id
        else:
            # case args.update_method == "nccl2_reduce_layer":
            build_stra.num_trainers = 1
            build_stra.trainer_id = 0

W
Wu Yi 已提交
479
        self.lr = args.lr
W
Wu Yi 已提交
480
        if args.nccl2_reduce_layer_local_run:
481 482 483 484 485 486 487 488
            (
                test_program,
                avg_cost,
                train_reader,
                test_reader,
                batch_acc,
                predict,
            ) = self.get_model(batch_size=args.batch_size, single_device=True)
489
        elif args.use_dgc:
490 491 492 493 494 495 496
            (
                test_program,
                avg_cost,
                train_reader,
                test_reader,
                batch_acc,
                predict,
497 498 499 500 501
            ) = self.get_model(
                batch_size=args.batch_size,
                use_dgc=args.use_dgc,
                build_strategy=build_stra,
            )
W
Wu Yi 已提交
502
        else:
503 504 505 506 507 508 509 510
            (
                test_program,
                avg_cost,
                train_reader,
                test_reader,
                batch_acc,
                predict,
            ) = self.get_model(batch_size=args.batch_size)
511

W
Wu Yi 已提交
512
        if args.update_method == "pserver":
513
            print_to_err(
514
                type(self).__name__,
515 516 517 518 519 520 521 522 523 524 525
                "begin to run transpile on trainer with pserver mode",
            )
            t = self.get_transpiler(
                trainer_id=args.trainer_id,
                main_program=fluid.default_main_program(),
                pserver_endpoints=args.endpoints,
                trainers=args.trainers,
                sync_mode=args.sync_mode,
                dc_asgd=args.dc_asgd,
                hogwild_mode=args.hogwild,
            )
T
tangwei12 已提交
526

T
typhoonzero 已提交
527
            trainer_prog = t.get_trainer_program()
528
            print_to_err(
529
                type(self).__name__,
530 531 532 533 534 535
                "get trainer program done with pserver mode.",
            )
        elif (
            args.update_method == "nccl2"
            or args.update_method == "nccl2_reduce_layer"
        ):
W
Wu Yi 已提交
536
            # transpile for nccl2
537
            config = paddle.distributed.transpiler.DistributeTranspilerConfig()
W
Wu Yi 已提交
538
            config.mode = "nccl2"
539
            config.nccl_comm_num = args.nccl_comm_num
540 541
            if args.use_hallreduce:
                config.use_hierarchical_allreduce = True
542 543 544
                config.hierarchical_allreduce_inter_nranks = (
                    args.hallreduce_inter_nranks
                )
545
            print_to_err(
546
                type(self).__name__,
547 548
                "begin to run transpile on trainer with nccl2 mode",
            )
549 550 551
            nccl2_t = paddle.distributed.transpiler.DistributeTranspiler(
                config=config
            )
552 553 554 555 556 557 558
            nccl2_t.transpile(
                args.trainer_id,
                program=fluid.default_main_program(),
                startup_program=fluid.default_startup_program(),
                trainers=args.endpoints,
                current_endpoint=args.current_endpoint,
            )
559
            print_to_err(
560 561
                type(self).__name__, "get trainer program done. with nccl2 mode"
            )
W
Wu Yi 已提交
562
            trainer_prog = fluid.default_main_program()
T
typhoonzero 已提交
563
        else:
564
            print_to_err(
565
                type(self).__name__,
566 567
                "do nothing about main program, just use it",
            )
T
typhoonzero 已提交
568
            trainer_prog = fluid.default_main_program()
569
            print_to_err(type(self).__name__, "use main program done.")
T
typhoonzero 已提交
570

571 572 573
        # FIXME(gongwb):wait pserver initialization.
        time.sleep(1)

574
        if args.use_cuda:
575 576
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
577 578 579
        else:
            place = fluid.CPUPlace()

580 581
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
582
        print_to_err(type(self).__name__, "run worker startup program done.")
T
typhoonzero 已提交
583

W
Wu Yi 已提交
584 585
        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1
586

587
        print_to_err(type(self).__name__, "begin to compile with data parallel")
588 589
        binary = compiler.CompiledProgram(
            trainer_prog, build_strategy=build_stra
590
        )
591
        print_to_err(type(self).__name__, "program compiled with data parallel")
T
typhoonzero 已提交
592 593

        feed_var_list = [
594 595
            var
            for var in trainer_prog.global_block().vars.values()
T
typhoonzero 已提交
596 597 598 599
            if var.is_data
        ]

        feeder = fluid.DataFeeder(feed_var_list, place)
600
        reader_generator = train_reader()
T
typhoonzero 已提交
601

602 603
        def get_data():
            origin_batch = next(reader_generator)
W
Wu Yi 已提交
604
            if args.update_method != "local" and args.use_reader_alloc:
605 606 607 608 609 610 611
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch
T
typhoonzero 已提交
612

613
        lr_scheduler = self.get_lr_scheduler(trainer_prog)
614
        print_to_err(type(self).__name__, "begin to train on trainer")
W
Wu Yi 已提交
615
        out_losses = []
616
        for i in range(RUN_STEP):
617 618 619
            (loss,) = exe.run(
                binary, fetch_list=[avg_cost.name], feed=feeder.feed(get_data())
            )
W
Wu Yi 已提交
620
            out_losses.append(loss[0])
621
            print_to_err(type(self).__name__, "run step %d finished" % i)
622 623 624
            if lr_scheduler is not None:
                lr_scheduler.step()

625 626
        print_to_err(type(self).__name__, "trainer run finished\n")
        # print_to_err(type(self).__name__, "out_losses")
627

628
        sys.stdout = old_stdout
629
        print_to_out(out_losses)
T
typhoonzero 已提交
630 631


632
class TestParallelDyGraphRunnerBase:
633 634
    def get_model(self):
        raise NotImplementedError(
635 636
            "get_model should be implemented by child classes."
        )
637 638 639

    def run_one_loop(self, model, opt, data):
        raise NotImplementedError(
640 641
            "train_one_loop should be implemented by the child classes."
        )
642

643
    def _get_data(self, batch, args):
644 645 646 647
        if (
            paddle.distributed.get_world_size() == 1
            and args.update_method == 'gloo'
        ):  # Gloo single mode
X
xiongkun 已提交
648 649
            return batch
        elif args.update_method != "local":
650
            new_batch = []
651

652 653 654
            # NOTE(@xiongkun03) args.diff_batch means batch length is different:
            # such as : batch = [2,3,4,5], then the first rank will get [2]  and
            # the second rank will get [3,4,5].
655 656
            # this function is for test sparse_embedding_differ_length
            if hasattr(args, "diff_batch") and args.diff_batch:
657 658 659
                assert (
                    len(batch) > 2
                ), "in differ_batch mode, len(batch) must > 2."
660 661 662 663 664 665 666 667 668 669 670 671 672 673
                if paddle.distributed.get_rank() == 0:
                    new_batch.append(batch[0])
                elif paddle.distributed.get_rank() == 1:
                    new_batch.extend([_ for _ in batch[1:]])
                else:
                    raise NotImplementedError(
                        "Current TestParallelDyGraphRunnerBase don't support world_size > 2"
                    )
                return new_batch
            else:
                for offset, item in enumerate(batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
674 675 676
        else:
            return batch

677 678
    def run_trainer(self, args):
        seed = 90
X
xiongkun 已提交
679 680 681
        if args.update_method == 'gloo':
            place = fluid.CPUPlace()
        elif fluid.core.is_compiled_with_cuda():
682 683 684 685 686
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
687 688 689
        elif fluid.core.is_compiled_with_npu():
            device_id = int(os.getenv("FLAGS_selected_npus", "0"))
            place = fluid.NPUPlace(device_id)
690 691 692
        elif fluid.core.is_compiled_with_mlu():
            device_id = int(os.getenv("FLAGS_selected_mlus", "0"))
            place = fluid.MLUPlace(device_id)
693
        else:
694
            assert "Only support CUDAPlace or XPUPlace or CPU(Gloo) for now."
695 696 697 698

        with fluid.dygraph.guard(place):
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
Y
Yan Xu 已提交
699 700
            np.random.seed(seed)
            import random
701

702
            random.seed(seed)
703 704
            model, train_reader, opt = self.get_model()
            nranks = len(args.endpoints.split(",")) if args.endpoints else 1
Y
Yan Xu 已提交
705

706 707 708 709 710 711 712
            # if args.update_method == "nccl2":
            if (
                args.update_method == "nccl2"
                or args.update_method == "bkcl"
                or args.update_method == "hccl"
                or args.update_method == "cncl"
            ):
Q
qizhaoaoe 已提交
713
                strategy = paddle.distributed.parallel.ParallelStrategy()
714 715 716 717
                strategy.nranks = nranks
                strategy.local_rank = args.trainer_id
                strategy.trainer_endpoints = args.endpoints.split(",")
                strategy.current_endpoint = args.current_endpoint
718
                paddle.distributed.init_parallel_env()
719
                print_to_err(
720
                    type(self).__name__,
721 722
                    "begin to prepare context in dygraph with nccl2",
                )
723
                if not args.find_unused_parameters:
Q
qizhaoaoe 已提交
724
                    model = paddle.DataParallel(
725 726
                        model, strategy, find_unused_parameters=False
                    )
727
                else:
Q
qizhaoaoe 已提交
728
                    model = paddle.DataParallel(
729 730
                        model, strategy, find_unused_parameters=True
                    )
731
                print_to_err(type(self).__name__, "model built in dygraph")
X
xiongkun 已提交
732 733 734 735

            elif args.update_method == "gloo":
                paddle.distributed.init_parallel_env()
                if not args.find_unused_parameters:
Q
qizhaoaoe 已提交
736
                    model = paddle.DataParallel(
737 738
                        model, find_unused_parameters=False
                    )
X
xiongkun 已提交
739
                else:
Q
qizhaoaoe 已提交
740
                    model = paddle.DataParallel(
741 742
                        model, find_unused_parameters=True
                    )
X
xiongkun 已提交
743

744
            out_losses = []
745
            print_to_err(type(self).__name__, "begin to run dygraph training")
746
            for step_id, data in enumerate(train_reader()):
747
                data = self._get_data(data, args)
748 749 750
                if step_id == RUN_STEP:
                    break
                loss = self.run_one_loop(model, opt, data)
G
guru4elephant 已提交
751
                if step_id % 10 == 0:
752
                    print_to_err(
753
                        type(self).__name__,
754 755
                        "loss at step %d: %f" % (step_id, loss.numpy()),
                    )
Y
Yan Xu 已提交
756
                out_losses.append(loss.numpy())
757 758 759 760

                loss.backward()

                opt.minimize(loss)
761 762
                if not args.accumulate_gradient:
                    model.clear_gradients()
763
        print_to_out(out_losses)
764

765 766 767 768 769 770 771 772 773
    def run_trainer_with_spawn(self, args):
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
774
        random.seed(seed)
775
        # get trainer id
L
LiYuRio 已提交
776 777
        paddle.distributed.parallel._get_global_parallel_env()
        args.trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
778 779

        # 3. init parallel env
X
xiongkun 已提交
780
        if args.update_method in ["nccl2", "gloo"]:
781 782 783 784
            paddle.distributed.init_parallel_env()

        # 4. train model
        model, train_reader, opt = self.get_model()
X
xiongkun 已提交
785
        if args.update_method in ["nccl2", "gloo"]:
786
            model = paddle.DataParallel(
787 788
                model, find_unused_parameters=args.find_unused_parameters
            )
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.minimize(loss)
            model.clear_gradients()
        return out_losses

804
    def run_use_fleet_api_trainer(self, args):
805
        import paddle.distributed.fleet as fleet
806

807 808 809 810 811 812 813 814
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
815
        random.seed(seed)
816
        # get trainer id
L
LiYuRio 已提交
817 818
        paddle.distributed.parallel._get_global_parallel_env()
        args.trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
819

820 821
        # set strategy
        strategy = fleet.DistributedStrategy()
822 823
        if args.find_unused_parameters:
            strategy.find_unused_parameters = True
824

825
        # 3. init parallel env
826
        if args.update_method == "nccl2" or "bkcl" or "hccl":
827
            fleet.init(is_collective=True, strategy=strategy)
828 829 830

        # 4. train model
        model, train_reader, opt = self.get_model()
831
        if args.update_method == "nccl2" or "bkcl" or "hccl":
832 833 834 835 836 837 838 839 840 841 842 843 844 845
            opt = fleet.distributed_optimizer(opt)
            model = fleet.distributed_model(model)

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.step()
846 847
            if not args.accumulate_gradient:
                opt.clear_grad()
848 849
        print_to_out(out_losses)

850

T
typhoonzero 已提交
851
def runtime_main(test_class):
W
Wu Yi 已提交
852
    parser = argparse.ArgumentParser(description='Run dist test.')
853 854 855
    parser.add_argument(
        '--role', type=str, required=True, choices=['pserver', 'trainer']
    )
W
Wu Yi 已提交
856
    parser.add_argument('--endpoints', type=str, required=False, default="")
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
    parser.add_argument(
        '--update_method',
        type=str,
        default="local",
        choices=[
            "pserver",
            "nccl2",
            "bkcl",
            "local",
            "nccl2_reduce_layer",
            "gloo",
            "hccl",
            "cncl",
        ],
    )
W
Wu Yi 已提交
872 873
    parser.add_argument('--trainer_id', type=int, required=False, default=0)
    parser.add_argument('--trainers', type=int, required=False, default=1)
874
    parser.add_argument('--nccl_comm_num', type=int, required=False, default=1)
875 876
    parser.add_argument('--enable_backward_deps', action='store_true')
    parser.add_argument('--use_hallreduce', action='store_true')
877
    parser.add_argument('--use_pipeline', action='store_true')
878
    parser.add_argument('--use_fleet_api', action='store_true')
879
    parser.add_argument('--use_fleet_api_20', action='store_true')
880
    parser.add_argument('--use_local_sgd', action='store_true')
881
    parser.add_argument('--diff_batch', action='store_true')
882
    parser.add_argument('--ut4grad_allreduce', action='store_true')
883 884 885 886 887 888
    parser.add_argument(
        '--hallreduce_inter_nranks', type=int, required=False, default=2
    )
    parser.add_argument(
        '--current_endpoint', type=str, required=False, default=""
    )
W
Wu Yi 已提交
889
    parser.add_argument('--sync_mode', action='store_true')
890
    parser.add_argument('--use_cuda', action='store_true')
X
xiongkun 已提交
891
    parser.add_argument('--use_cpu', action='store_true')
892
    parser.add_argument('--use_xpu', action='store_true')
893
    parser.add_argument('--use_dgc', action='store_true')
894
    parser.add_argument('--use_npu', action='store_true')
895
    parser.add_argument('--use_mlu', action='store_true')
896
    parser.add_argument('--accumulate_gradient', action='store_true')
897
    parser.add_argument('--find_unused_parameters', action='store_true')
W
Wu Yi 已提交
898
    parser.add_argument('--use_reduce', action='store_true')
W
Wu Yi 已提交
899
    parser.add_argument('--dc_asgd', action='store_true')
T
tangwei12 已提交
900
    parser.add_argument('--hogwild', action='store_true')
901
    parser.add_argument('--save_model', action='store_true')
902 903 904
    parser.add_argument(
        '--use_reader_alloc', action='store_true', required=False
    )
905
    parser.add_argument('--batch_size', required=False, type=int, default=2)
W
Wu Yi 已提交
906
    parser.add_argument('--lr', required=False, type=float, default=0.001)
907 908 909 910 911 912 913 914 915
    parser.add_argument(
        '--batch_merge_repeat', required=False, type=int, default=1
    )
    parser.add_argument(
        '--nccl2_reduce_layer_local_run',
        required=False,
        type=bool,
        default=False,
    )
916
    parser.add_argument('--sync_batch_norm', action='store_true')
917 918 919
    parser.add_argument(
        '--fuse_all_reduce', required=False, type=ast.literal_eval, default=None
    )
W
Wu Yi 已提交
920 921

    args = parser.parse_args()
T
typhoonzero 已提交
922

X
xiongkun 已提交
923 924 925
    if args.update_method == 'gloo':
        paddle.set_device("cpu")

T
typhoonzero 已提交
926
    model = test_class()
W
Wu Yi 已提交
927
    if args.role == "pserver" and args.update_method == "pserver":
W
Wu Yi 已提交
928
        model.run_pserver(args)
929 930
    elif args.use_fleet_api:
        model.run_use_fleet_api_trainer(args)
931 932
    elif args.use_fleet_api_20:
        model.run_use_fleet_api_20_trainer(args)
933 934
    elif args.use_pipeline:
        model.run_pipeline_trainer(args)
T
typhoonzero 已提交
935
    else:
936
        model.run_trainer(args)
X
Xin Pan 已提交
937

M
minqiyang 已提交
938

Y
Yancey1989 已提交
939 940
import socket
from contextlib import closing
M
minqiyang 已提交
941

X
Xin Pan 已提交
942 943

class TestDistBase(unittest.TestCase):
W
Wu Yi 已提交
944 945 946
    def _setup_config(self):
        raise NotImplementedError("tests should have _setup_config implemented")

947 948 949
    def _after_setup_config(self):
        if self._enforce_place == "CPU":
            self.__use_cuda = False
950
            self.__use_xpu = False
951
            self._use_dgc = False
952
            self.__use_npu = False
953
            self._use_mlu = False
954 955
        elif self._enforce_place == "GPU":
            self.__use_cuda = True
956
            self.__use_xpu = False
957
            self.__use_npu = False
958
            self._use_mlu = False
959 960 961 962
        elif self._enforce_place == "XPU":
            self.__use_cuda = False
            self.__use_xpu = True
            self._use_dgc = False
963
            self.__use_npu = False
964
            self._use_mlu = False
965 966 967 968 969
        elif self._enforce_place == "NPU":
            self.__use_cuda = False
            self.__use_xpu = False
            self._use_dgc = False
            self.__use_npu = True
970 971 972 973 974 975 976
            self._use_mlu = False
        elif self._enforce_place == "MLU":
            self.__use_cuda = False
            self.__use_xpu = False
            self._use_dgc = False
            self.__use_npu = False
            self._use_mlu = True
977 978 979 980 981
        else:
            if fluid.core.is_compiled_with_cuda():
                self.__use_cuda = True
            else:
                self.__use_cuda = False
982 983 984 985
                self._use_dgc = False

        if self._use_reduce:
            assert not self._use_dgc
986

X
Xin Pan 已提交
987 988 989
    def setUp(self):
        self._trainers = 2
        self._pservers = 2
Y
Yancey1989 已提交
990
        self._port_set = set()
M
minqiyang 已提交
991
        self._python_interp = sys.executable
W
Wu Yi 已提交
992
        self._sync_mode = True
T
tangwei12 已提交
993
        self._hogwild_mode = False
994
        self._enforce_place = None
W
Wu Yi 已提交
995
        self._use_reduce = False
W
Wu Yi 已提交
996
        self._dc_asgd = False  # must use with async mode
997
        self._use_reader_alloc = True
W
Wu Yi 已提交
998
        self._nccl2_mode = False
999
        self._bkcl_mode = False
X
xiongkun 已提交
1000
        self._gloo_mode = False  # now, support gloo backend
1001
        self._hccl_mode = False
1002
        self._cncl_mode = False
1003
        self._pipeline_mode = False
1004
        self._mp_mode = False
1005
        self._diff_batch = False
W
Wu Yi 已提交
1006 1007 1008 1009 1010
        # FIXME(typhoonzero): I added this stupid argument to enable
        # testing allreduce layers, which users can call layers.allreduce
        # to accumulate tensors at anywhere. Find a better way to do this
        # test, reduce check this argument everywhere.
        self._nccl2_reduce_layer = False
W
Wu Yi 已提交
1011
        self._lr = 0.001
1012
        self._use_dgc = False
1013
        self._dygraph = False
1014
        self._nccl_comm_num = 1
1015
        self._enable_backward_deps = False
1016
        self._use_fleet_api = False
1017
        self._use_fleet_api_20 = False
1018 1019
        self._use_local_sgd = False
        self._ut4grad_allreduce = False
1020
        self._use_hallreduce = False
1021
        self._save_model = False
1022
        self._fuse_all_reduce = None
1023
        self._accumulate_gradient = False
1024
        self._find_unused_parameters = False
W
Wu Yi 已提交
1025
        self._setup_config()
1026 1027 1028 1029 1030 1031 1032

        global DIST_UT_PORT
        if DIST_UT_PORT == 0 and os.getenv("PADDLE_DIST_UT_PORT"):
            DIST_UT_PORT = int(os.getenv("PADDLE_DIST_UT_PORT"))

        if DIST_UT_PORT == 0:
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
1033 1034 1035
                self._find_free_port(),
                self._find_free_port(),
            )
1036 1037
        else:
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
1038 1039 1040
                DIST_UT_PORT,
                DIST_UT_PORT + 1,
            )
1041
            DIST_UT_PORT += 2
1042
            self._dist_port = DIST_UT_PORT
1043

1044
        self._after_setup_config()
X
Xin Pan 已提交
1045

1046 1047 1048 1049 1050
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()

Y
Yancey1989 已提交
1051
    def _find_free_port(self):
Y
Yancey1989 已提交
1052
        def __free_port():
1053 1054 1055
            with closing(
                socket.socket(socket.AF_INET, socket.SOCK_STREAM)
            ) as s:
Y
Yancey1989 已提交
1056
                s.bind(('', 0))
1057
                print_to_err(
1058 1059
                    type(self).__name__, "socket name: %s" % s.getsockname()[1]
                )
Y
Yancey1989 已提交
1060 1061 1062 1063 1064 1065 1066
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port
Y
Yancey1989 已提交
1067

1068 1069 1070
    def start_pserver(
        self, model_file, check_error_log, required_envs, log_name=""
    ):
X
Xin Pan 已提交
1071
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
1072 1073 1074 1075 1076 1077 1078 1079
        ps_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            required_envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            ps_cmd += " -m coverage run --branch -p"

        ps_cmd += " %s --role pserver --endpoints %s --trainer_id 0 --current_endpoint %s --trainers %d --update_method pserver"

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
        ps0_cmd = ps_cmd % (
            self._python_interp,
            model_file,
            self._ps_endpoints,
            ps0_ep,
            self._trainers,
        )
        ps1_cmd = ps_cmd % (
            self._python_interp,
            model_file,
            self._ps_endpoints,
            ps1_ep,
            self._trainers,
        )
W
Wu Yi 已提交
1094 1095 1096 1097

        if self._sync_mode:
            ps0_cmd += " --sync_mode"
            ps1_cmd += " --sync_mode"
X
Xin Pan 已提交
1098

1099 1100
        print(ps0_cmd)
        print(ps1_cmd)
1101 1102 1103 1104
        path0 = os.path.join(self.temp_dir.name, log_name + "_ps0_err.log")
        path1 = os.path.join(self.temp_dir.name, log_name + "_ps1_err.log")
        ps0_pipe = open(path0, "wb")
        ps1_pipe = open(path1, "wb")
G
gongweibao 已提交
1105

1106
        print_to_err(type(self).__name__, "going to start pserver process 0")
1107 1108 1109 1110 1111 1112
        ps0_proc = subprocess.Popen(
            ps0_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps0_pipe,
            env=required_envs,
        )
1113
        print_to_err(type(self).__name__, "going to start pserver process 1")
1114 1115 1116 1117 1118 1119
        ps1_proc = subprocess.Popen(
            ps1_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps1_pipe,
            env=required_envs,
        )
G
gongweibao 已提交
1120

1121
        return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe
X
Xin Pan 已提交
1122

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
    def _run_local(
        self,
        model,
        envs,
        check_error_log=False,
        batch_size=DEFAULT_BATCH_SIZE,
        batch_merge_repeat=1,
        log_name="",
        devices="1",
    ):
G
gongweibao 已提交
1133

1134 1135 1136 1137 1138 1139
        cmd = self._python_interp

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            cmd += " -m coverage run --branch -p"

1140 1141 1142 1143
        cmd += " %s --role trainer --update_method local --lr %f" % (
            model,
            self._lr,
        )
1144

1145 1146 1147 1148
        if batch_size != DEFAULT_BATCH_SIZE:
            cmd += " --batch_size %d" % batch_size
        if batch_merge_repeat > 1:
            cmd += " --batch_merge_repeat %d" % batch_merge_repeat
W
Wu Yi 已提交
1149 1150
        if self._nccl2_reduce_layer:
            cmd += " --nccl2_reduce_layer_local_run 1"
1151

1152
        if self.__use_cuda:
1153
            cmd += " --use_cuda"
W
Wu Yi 已提交
1154
            env_local = {
1155 1156
                "CUDA_VISIBLE_DEVICES": devices,
                "PADDLE_TRAINERS_NUM": "1",
1157
                "PADDLE_TRAINER_ID": "0",
1158 1159 1160 1161 1162
            }
        elif self.__use_xpu:
            cmd += " --use_xpu"
            env_local = {
                "FLAGS_selected_xpus": devices,
W
Wu Yi 已提交
1163
                "PADDLE_TRAINERS_NUM": "1",
1164
                "PADDLE_TRAINER_ID": "0",
W
Wu Yi 已提交
1165
            }
1166 1167 1168 1169 1170
        elif self.__use_npu:
            cmd += " --use_npu"
            env_local = {
                "FLAGS_selected_npus": devices,
                "PADDLE_TRAINERS_NUM": "1",
1171
                "PADDLE_TRAINER_ID": "0",
1172
            }
1173 1174 1175
        else:
            env_local = {'CPU_NUM': '1'}

1176
        # not use dgc in single card
1177
        if len(devices) > 1 and self._use_dgc:
1178 1179
            cmd += " --use_dgc"

1180 1181 1182
        if self._accumulate_gradient:
            cmd += " --accumulate_gradient"

1183 1184 1185
        if self._find_unused_parameters:
            cmd += " --find_unused_parameters"

W
Wu Yi 已提交
1186 1187
        env_local.update(envs)
        print("local_cmd: {}, env: {}".format(cmd, env_local))
G
gongweibao 已提交
1188

1189
        if check_error_log:
1190 1191
            path = os.path.join(self.temp_dir.name, log_name + "_local.log")
            err_log = open(path, "wb")
1192 1193 1194 1195 1196 1197
            local_proc = subprocess.Popen(
                cmd.split(" "),
                stdout=subprocess.PIPE,
                stderr=err_log,
                env=env_local,
            )
G
gongweibao 已提交
1198
        else:
1199 1200 1201 1202 1203 1204
            local_proc = subprocess.Popen(
                cmd.split(" "),
                stdout=subprocess.PIPE,
                stderr=subprocess.PIPE,
                env=env_local,
            )
G
gongweibao 已提交
1205

1206 1207 1208 1209 1210 1211
        local_out, local_err = local_proc.communicate()

        if check_error_log:
            err_log.close()

        sys.stderr.write('local_stderr: %s\n' % local_err)
W
Wu Yi 已提交
1212
        sys.stderr.write('local_stdout: %s\n' % pickle.loads(local_out))
X
Xin Pan 已提交
1213

W
Wu Yi 已提交
1214
        return pickle.loads(local_out)
1215

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
    def _run_local_gloo(
        self,
        model,
        envs,
        check_error_log=False,
        batch_size=DEFAULT_BATCH_SIZE,
        batch_merge_repeat=1,
        log_name="",
        devices="0",
    ):
X
xiongkun 已提交
1226 1227
        saved_endpoints = self._ps_endpoints
        self._ps_endpoints = self._ps_endpoints.split(',')[0]
1228 1229 1230
        result = self._run_cluster_gloo(
            model, envs, 'gloo', check_error_log, log_name
        )
X
xiongkun 已提交
1231 1232 1233
        self._ps_endpoints = saved_endpoints
        return result

1234
    def _run_cluster(self, model, envs, check_error_log, log_name):
X
Xin Pan 已提交
1235
        # Run dist train to compare with local results
1236 1237 1238
        ps0, ps1, ps0_pipe, ps1_pipe = self.start_pserver(
            model, check_error_log, envs, log_name=log_name
        )
W
Wu Yi 已提交
1239

X
Xin Pan 已提交
1240
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
1241

1242 1243 1244 1245 1246 1247 1248 1249
        tr_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --trainers %d --update_method pserver --lr %f"

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
        tr0_cmd = tr_cmd % (
            self._python_interp,
            model,
            self._ps_endpoints,
            0,
            ps0_ep,
            self._trainers,
            self._lr,
        )
        tr1_cmd = tr_cmd % (
            self._python_interp,
            model,
            self._ps_endpoints,
            1,
            ps1_ep,
            self._trainers,
            self._lr,
        )
W
Wu Yi 已提交
1268 1269 1270 1271

        if self._sync_mode:
            tr0_cmd += " --sync_mode"
            tr1_cmd += " --sync_mode"
T
tangwei12 已提交
1272 1273 1274
        if self._hogwild_mode:
            tr0_cmd += " --hogwild"
            tr1_cmd += " --hogwild"
W
Wu Yi 已提交
1275 1276 1277
        if self._use_reduce:
            tr0_cmd += " --use_reduce"
            tr1_cmd += " --use_reduce"
1278 1279 1280
        if self._use_reader_alloc:
            tr0_cmd += " --use_reader_alloc"
            tr1_cmd += " --use_reader_alloc"
1281
        if self.__use_cuda:
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
            tr0_cmd += " --use_cuda"
            tr1_cmd += " --use_cuda"
            env0 = {"CUDA_VISIBLE_DEVICES": "0"}
            env1 = {"CUDA_VISIBLE_DEVICES": "1"}
        else:
            env0 = {'CPU_NUM': '1'}
            env1 = {'CPU_NUM': '1'}

        env0.update(envs)
        env1.update(envs)
X
Xin Pan 已提交
1292

W
Wu Yi 已提交
1293 1294
        print("tr0_cmd: {}, env: {}".format(tr0_cmd, env0))
        print("tr1_cmd: {}, env: {}".format(tr1_cmd, env1))
1295 1296 1297 1298 1299

        path0 = os.path.join(self.temp_dir.name, log_name + "_tr0_err.log")
        path1 = os.path.join(self.temp_dir.name, log_name + "_tr1_err.log")
        tr0_pipe = open(path0, "wb")
        tr1_pipe = open(path1, "wb")
G
gongweibao 已提交
1300

1301
        print_to_err(type(self).__name__, "going to start trainer process 0")
1302 1303 1304 1305 1306 1307
        tr0_proc = subprocess.Popen(
            tr0_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=tr0_pipe,
            env=env0,
        )
1308
        print_to_err(type(self).__name__, "going to start trainer process 1")
1309 1310 1311 1312 1313 1314
        tr1_proc = subprocess.Popen(
            tr1_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=tr1_pipe,
            env=env1,
        )
X
Xin Pan 已提交
1315

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
        # Wait until trainer process terminate
        while True:
            stat0 = tr0_proc.poll()
            time.sleep(0.1)
            if stat0 is not None:
                break
        while True:
            stat1 = tr1_proc.poll()
            time.sleep(0.1)
            if stat1 is not None:
                break

1328 1329
        tr0_out, tr0_err = tr0_proc.communicate()
        tr1_out, tr1_err = tr1_proc.communicate()
X
Xin Pan 已提交
1330

G
gongweibao 已提交
1331
        # close trainer file
1332 1333 1334 1335
        tr0_pipe.close()
        tr1_pipe.close()
        ps0_pipe.close()
        ps1_pipe.close()
W
Wu Yi 已提交
1336

W
Wu Yi 已提交
1337 1338
        ps0.terminate()
        ps1.terminate()
T
typhoonzero 已提交
1339

W
Wu Yi 已提交
1340 1341
        return pickle.loads(tr0_out), pickle.loads(tr1_out)

1342 1343 1344
    def _get_gloo_trainer_cmd(
        self, model, ep, update_method, trainer_id, trainer_num
    ):
X
xiongkun 已提交
1345 1346 1347 1348 1349 1350 1351 1352
        env = {}
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

1353 1354 1355 1356 1357 1358 1359 1360 1361
        tr_cmd = tr_cmd % (
            self._python_interp,
            model,
            self._ps_endpoints,
            trainer_id,
            ep,
            update_method,
            self._lr,
        )
X
xiongkun 已提交
1362 1363 1364 1365 1366

        if self._use_reduce:
            tr_cmd += " --use_reduce"
        if self._use_reader_alloc:
            tr_cmd += " --use_reader_alloc"
1367 1368
        # assert self._use_reduce == False, "gloo not support _use_reduce"
        # assert self._use_reader_alloc == False, "gloo not support _use_reduce"
X
xiongkun 已提交
1369 1370
        if self._save_model:
            tr_cmd += " --save_model"
1371 1372
        if self._diff_batch:
            tr_cmd += " --diff_batch"
X
xiongkun 已提交
1373 1374
        self.__use_cuda = False
        self.__use_xpu = False
1375 1376
        assert not self.__use_cuda, "gloo not support use cuda"
        assert not self.__use_xpu, "gloo not support use xpu"
X
xiongkun 已提交
1377
        tr_cmd += " --use_cpu"
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
        env.update(
            {
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
                "PADDLE_CURRENT_ENDPOINT": ep,
                "PADDLE_DISTRI_BACKEND": "gloo",
                "GLOG_v": "2",
            }
        )
X
xiongkun 已提交
1389

1390
        assert not self._use_dgc, "gloo not support use dgc"
1391

X
xiongkun 已提交
1392 1393 1394 1395 1396 1397
        if self._accumulate_gradient:
            tr_cmd += " --accumulate_gradient"

        if self._find_unused_parameters:
            tr_cmd += " --find_unused_parameters"

1398
        assert not self._pipeline_mode, "gloo not support use pipeline"
X
xiongkun 已提交
1399 1400 1401 1402 1403 1404 1405

        if self._enable_backward_deps:  # build strategy, save it
            tr_cmd += " --enable_backward_deps"

        if self._fuse_all_reduce is not None:
            tr_cmd += " --fuse_all_reduce {}".format(self._fuse_all_reduce)

1406 1407
        assert not self._use_fleet_api, "gloo not support use fleet api"
        assert not self._use_fleet_api_20, "gloo not support use fleet api"
X
xiongkun 已提交
1408 1409
        return tr_cmd, env

1410 1411 1412
    def _get_nccl2_trainer_cmd(
        self, model, ep, update_method, trainer_id, trainer_num
    ):
1413
        env = {}
1414 1415 1416 1417 1418 1419 1420
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

1421 1422 1423 1424 1425 1426 1427 1428 1429
        tr_cmd = tr_cmd % (
            self._python_interp,
            model,
            self._ps_endpoints,
            trainer_id,
            ep,
            update_method,
            self._lr,
        )
W
Wu Yi 已提交
1430 1431

        if self._use_reduce:
1432
            tr_cmd += " --use_reduce"
W
Wu Yi 已提交
1433
        if self._use_reader_alloc:
1434
            tr_cmd += " --use_reader_alloc"
1435 1436
        if self._save_model:
            tr_cmd += " --save_model"
W
Wu Yi 已提交
1437
        if self.__use_cuda:
1438
            tr_cmd += " --use_cuda"
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
            env.update(
                {
                    "FLAGS_selected_gpus": "{}".format(0),
                    "CUDA_VISIBLE_DEVICES": "{}".format(trainer_id),
                    "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
                    "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                    "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                    "PADDLE_CURRENT_ENDPOINT": ep,
                }
            )
1449 1450 1451 1452
        # TODO(liuyuhui):XPU_VISIBLE_DEVICES is not working right now,
        # will update it after Badiu Kunlun partners' support.
        elif self.__use_xpu:
            tr_cmd += " --use_xpu"
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
            env.update(
                {
                    "FLAGS_selected_xpus": "{}".format(trainer_id),
                    # "XPU_VISIBLE_DEVICES": "{}".format(trainer_id + 1),
                    "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
                    "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                    "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                    "PADDLE_CURRENT_ENDPOINT": ep,
                    "GLOG_v": "2",
                }
            )
1464 1465
        elif self.__use_npu:
            tr_cmd += " --use_npu"
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
            env.update(
                {
                    "FLAGS_selected_npus": "{}".format(trainer_id),
                    "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
                    "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                    "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                    "PADDLE_CURRENT_ENDPOINT": ep,
                    "GLOG_v": "2",
                }
            )
1476 1477
        elif self._use_mlu:
            tr_cmd += " --use_mlu"
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
            env.update(
                {
                    "FLAGS_selected_mlus": "{}".format(trainer_id),
                    "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
                    "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                    "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                    "PADDLE_CURRENT_ENDPOINT": ep,
                    "GLOG_v": "4",
                }
            )
W
Wu Yi 已提交
1488
        else:
1489
            env.update({'CPU_NUM': '1'})
W
Wu Yi 已提交
1490

1491
        if self._use_dgc:
1492 1493
            tr_cmd += " --use_dgc"

1494 1495 1496
        if self._accumulate_gradient:
            tr_cmd += " --accumulate_gradient"

1497 1498 1499
        if self._find_unused_parameters:
            tr_cmd += " --find_unused_parameters"

1500 1501
        if self._pipeline_mode:
            tr_cmd += " --use_pipeline"
1502
        if self._mp_mode:
W
WangXi 已提交
1503
            env = {"FLAGS_selected_gpus": "{}".format(trainer_id)}
1504 1505

        if self._nccl_comm_num > 1:
1506
            tr_cmd += " --nccl_comm_num {}".format(self._nccl_comm_num)
1507

1508 1509
        if self._use_hallreduce:
            tr_cmd += " --use_hallreduce --hallreduce_inter_nranks 2"
1510

1511
        if self._enable_backward_deps:
1512
            tr_cmd += " --enable_backward_deps"
1513

1514 1515 1516
        if self._fuse_all_reduce is not None:
            tr_cmd += " --fuse_all_reduce {}".format(self._fuse_all_reduce)

1517
        if self._use_fleet_api:
1518 1519 1520 1521 1522
            tr_cmd += (
                " --use_fleet_api_20"
                if self._use_fleet_api_20
                else " --use_fleet_api"
            )
1523 1524 1525 1526
            if self._use_local_sgd:
                tr_cmd += " --use_local_sgd"
            if self._ut4grad_allreduce:
                tr_cmd += " --ut4grad_allreduce"
1527 1528
            if hasattr(self, '_sync_batch_norm') and self._sync_batch_norm:
                tr_cmd += " --sync_batch_norm"
1529

1530 1531 1532
        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            env['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')

1533
        return tr_cmd, env
W
Wu Yi 已提交
1534

1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
    def _run_cluster_gloo(
        self, model, envs, update_method, check_error_log, log_name
    ):
        assert update_method == "gloo", (
            "_run_cluster_gloo must have update_method: gloo, but get %s"
            % update_method
        )
        assert (
            not self._use_hallreduce
        ), "_run_cluster_gloo must have _use_hallreduce = false"
X
xiongkun 已提交
1545 1546 1547 1548 1549 1550 1551 1552

        worker_endpoints = self._ps_endpoints.split(",")

        trainer_num = len(worker_endpoints)

        procs = []
        pipes = []
        for i in range(0, trainer_num):
1553 1554 1555
            tr_cmd, tr_env = self._get_gloo_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num
            )
X
xiongkun 已提交
1556 1557 1558
            tr_env.update(envs)
            tr_env["GLOG_vmodule"] = 'gloo_context=4'
            tr_env["GLOG_v"] = '3'
1559 1560 1561 1562 1563
            print(
                "use_hallreduce:{} tr_cmd:{}, env: {}".format(
                    self._use_hallreduce, tr_cmd, tr_env
                )
            )
X
xiongkun 已提交
1564

1565 1566 1567
            path = os.path.join(
                self.temp_dir.name, log_name + "_tr{}_err.log".format(i)
            )
1568
            tr_pipe = open(path, "wb")
X
xiongkun 已提交
1569 1570 1571

            print_to_err(
                type(self).__name__,
1572 1573 1574 1575 1576 1577 1578 1579
                "going to start process {} with nccl2".format(i),
            )
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env,
            )
X
xiongkun 已提交
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

        if trainer_num == 1:
1592 1593
            if check_error_log:
                print("outs[0]:", outs[0])
X
xiongkun 已提交
1594 1595 1596 1597 1598 1599 1600 1601
            return pickle.loads(outs[0])

        else:
            if check_error_log:
                print("outs[0]:", outs[0])
                print("outs[1]:", outs[1])
            return pickle.loads(outs[0]), pickle.loads(outs[1])

1602 1603 1604
    def _run_cluster_nccl2(
        self, model, envs, update_method, check_error_log, log_name
    ):
1605 1606
        if self._use_hallreduce:
            self._ps_endpoints = ""
1607 1608 1609

            global DIST_UT_PORT
            if DIST_UT_PORT == 0:
W
WangXi 已提交
1610
                # NOTE(wangxi). hallreduce test must use 4cards after nccl>=2.7
1611 1612
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (
1613 1614
                        self._find_free_port()
                    )
1615 1616 1617 1618
            else:
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (DIST_UT_PORT + i)
                DIST_UT_PORT += 4
1619
            self._ps_endpoints = self._ps_endpoints[:-1]
W
Wu Yi 已提交
1620

1621 1622
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
W
Wu Yi 已提交
1623

1624
        trainer_num = len(worker_endpoints)
W
Wu Yi 已提交
1625

1626 1627 1628 1629
        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
1630 1631
                model, worker_endpoints[i], update_method, i, trainer_num
            )
1632
            tr_env.update(envs)
1633 1634 1635 1636 1637
            print(
                "use_hallreduce:{} tr_cmd:{}, env: {}".format(
                    self._use_hallreduce, tr_cmd, tr_env
                )
            )
W
Wu Yi 已提交
1638

1639 1640 1641
            path = os.path.join(
                self.temp_dir.name, log_name + "_tr{}_err.log".format(i)
            )
1642
            tr_pipe = open(path, "wb")
W
Wu Yi 已提交
1643

1644
            print_to_err(
1645
                type(self).__name__,
1646 1647 1648 1649 1650 1651 1652 1653
                "going to start process {} with nccl2".format(i),
            )
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env,
            )
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

1665 1666 1667
        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
1668

1669
        return pickle.loads(outs[0]), pickle.loads(outs[1])
1670

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
    def _run_pipeline(self, model, envs, check_error_log, log_name):
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
        update_method = "nccl2"

        trainer_num = len(worker_endpoints)

        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
1682 1683
                model, worker_endpoints[i], update_method, i, trainer_num
            )
1684 1685 1686 1687 1688 1689 1690
            tr_env.update(envs)
            tr_env['CUDA_VISIBLE_DEVICES'] = "0,1"
            tr_env['NCCL_SHM_DISABLE'] = '1'
            tr_env['FLAGS_selected_gpus'] = str(i)
            tr_env['FLAGS_cudnn_deterministic'] = '0'
            print("tr_cmd:{}, env: {}".format(tr_cmd, tr_env))

1691 1692
            path = os.path.join(self.temp_dir.name + "tr{}_err.log".format(i))
            tr_pipe = open(path, "wb")
1693 1694 1695

            print_to_err(
                type(self).__name__,
1696 1697 1698 1699 1700 1701 1702 1703
                "going to start process {} with nccl2".format(i),
            )
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env,
            )
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
        return pickle.loads(outs[0]), pickle.loads(outs[1])

1720
    def _get_required_envs(self, check_error_log=False, need_envs={}):
1721 1722 1723 1724 1725 1726
        # TODO(typhoonzero): should auto adapt GPU count on the machine.
        required_envs = {
            "PATH": os.getenv("PATH", ""),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
G
guru4elephant 已提交
1727
            "FLAGS_rpc_deadline": "30000",  # 5sec to fail fast
1728
            "FLAGS_rpc_retry_bind_port": "50",
1729
            "FLAGS_cudnn_deterministic": "1",
1730
            "FLAGS_rpc_disable_reuse_port": "1",
W
Wu Yi 已提交
1731
            "http_proxy": "",
1732
            "NCCL_P2P_DISABLE": "1",
1733
            "NCCL_SHM_DISABLE": "1",
1734 1735 1736
        }

        if check_error_log:
1737 1738 1739 1740
            required_envs["GLOG_vmodule"] = (
                "fused_all_reduce_op_handle=10,all_reduce_op_handle=10,alloc_continuous_space_op=10,fuse_all_reduce_op_pass=10,"
                "alloc_continuous_space_for_grad_pass=10,fast_threaded_ssa_graph_executor=10,executor=10,operator=10,"
                "sparse_all_reduce_op_handle=10,gen_nccl_id_op=10,gen_nccl_id_op_help=10,nccl_helper=10,grpc_client=10,"
1741
                "grpc_server=10,request_handler_impl=10,section_worker=10"
1742
            )
1743 1744
            required_envs["GLOG_logtostderr"] = "1"

1745 1746
        if os.getenv('NVIDIA_TF32_OVERRIDE', '') is not None:
            required_envs['NVIDIA_TF32_OVERRIDE'] = os.getenv(
1747 1748
                'NVIDIA_TF32_OVERRIDE', ''
            )
1749

1750 1751 1752
        required_envs.update(need_envs)
        return required_envs

1753 1754 1755 1756 1757 1758 1759 1760
    def check_with_place(
        self,
        model_file,
        delta=1e-3,
        check_error_log=False,
        need_envs={},
        log_name="",
    ):
1761
        if self._dygraph and (self._gloo_mode or self._nccl2_mode):
1762 1763 1764 1765 1766 1767 1768
            self.check_with_place_func(
                model_file=model_file,
                delta=delta,
                check_error_log=check_error_log,
                need_envs=need_envs,
                log_name=log_name,
            )
1769
        else:
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
            self.check_with_place_func(
                model_file=model_file,
                delta=delta,
                check_error_log=check_error_log,
                need_envs=need_envs,
                log_name=log_name,
            )

    def check_with_place_func(
        self,
        model_file,
        delta=1e-3,
        check_error_log=False,
        need_envs={},
        log_name="",
    ):
1786 1787
        required_envs = self._get_required_envs(check_error_log, need_envs)

X
xiongkun 已提交
1788
        if self._gloo_mode:
1789 1790 1791
            local_losses = self._run_local_gloo(
                model_file, required_envs, check_error_log, log_name=log_name
            )
X
xiongkun 已提交
1792
        else:
1793 1794 1795
            local_losses = self._run_local(
                model_file, required_envs, check_error_log, log_name=log_name
            )
1796

W
Wu Yi 已提交
1797
        if self._nccl2_mode:
W
Wu Yi 已提交
1798 1799
            if self._nccl2_reduce_layer:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1800 1801
                    model_file,
                    required_envs,
1802 1803
                    update_method="nccl2_reduce_layer",
                    check_error_log=check_error_log,
1804 1805
                    log_name=log_name,
                )
W
Wu Yi 已提交
1806 1807
            else:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1808 1809
                    model_file,
                    required_envs,
1810 1811
                    update_method='nccl2',
                    check_error_log=check_error_log,
1812 1813
                    log_name=log_name,
                )
1814 1815 1816 1817 1818 1819
        elif self._bkcl_mode:
            tr0_losses, tr1_losses = self._run_cluster_nccl2(
                model_file,
                required_envs,
                update_method='bkcl',
                check_error_log=check_error_log,
1820 1821
                log_name=log_name,
            )
X
xiongkun 已提交
1822 1823 1824 1825 1826 1827 1828
        elif self._gloo_mode:
            # gloo mode, cpu only parallel train @xiongkun03
            tr0_losses, tr1_losses = self._run_cluster_gloo(
                model_file,
                required_envs,
                update_method='gloo',
                check_error_log=check_error_log,
1829 1830
                log_name=log_name,
            )
1831 1832 1833 1834 1835 1836
        elif self._hccl_mode:
            tr0_losses, tr1_losses = self._run_cluster_nccl2(
                model_file,
                required_envs,
                update_method='hccl',
                check_error_log=check_error_log,
1837 1838
                log_name=log_name,
            )
1839 1840 1841 1842 1843 1844
        elif self._cncl_mode:
            tr0_losses, tr1_losses = self._run_cluster_nccl2(
                model_file,
                required_envs,
                update_method='cncl',
                check_error_log=check_error_log,
1845 1846
                log_name=log_name,
            )
1847
        elif self._pipeline_mode:
1848 1849 1850
            tr0_losses, tr1_losses = self._run_pipeline(
                model_file, required_envs, check_error_log, log_name=log_name
            )
W
Wu Yi 已提交
1851
        else:
1852 1853 1854
            tr0_losses, tr1_losses = self._run_cluster(
                model_file, required_envs, check_error_log, log_name=log_name
            )
1855 1856

        for step_id in range(RUN_STEP):
W
Wu Yi 已提交
1857 1858 1859
            local_loss = local_losses[step_id]
            tr0_loss = tr0_losses[step_id]
            tr1_loss = tr1_losses[step_id]
1860 1861 1862 1863
            if self._pipeline_mode:
                dist_loss = np.array([tr1_loss])
            else:
                dist_loss = (np.array([tr0_loss]) + np.array([tr1_loss])) / 2
W
Wu Yi 已提交
1864 1865
            print("=======", local_loss, ":", dist_loss[0], "=======")
            self.assertAlmostEqual(local_loss, dist_loss[0], delta=delta)
1866

1867 1868 1869 1870 1871 1872 1873 1874
    def check_with_place_multi_cards(
        self,
        model_file,
        delta=1e-3,
        check_error_log=False,
        need_envs={},
        log_name="",
    ):
1875

1876 1877 1878 1879 1880 1881
        # need open p2p or shm otherwise multi cards mode will hang
        need_envs.update({"NCCL_P2P_DISABLE": "0", "NCCL_SHM_DISABLE": "0"})

        required_envs = self._get_required_envs(check_error_log, need_envs)

        if self._use_dgc:
1882 1883 1884 1885 1886 1887 1888
            multi_cards_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_dgc_2cards",
                devices="0,1",
            )
1889 1890

            self._use_dgc = False
1891 1892 1893 1894 1895 1896 1897
            base_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_base_2cards",
                devices="0,1",
            )
1898 1899 1900 1901 1902 1903 1904 1905

            self._use_dgc = True

            for step_id in range(RUN_STEP):
                base_loss = base_losses[step_id]
                multi_cards_loss = multi_cards_losses[step_id]
                print("=======", base_loss, ":", multi_cards_loss, "=======")
                self.assertAlmostEqual(base_loss, multi_cards_loss, delta=delta)