truncated_gaussian_random_kernel.cu 4.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/truncated_gaussian_random_kernel.h"

#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include <thrust/random.h>
#include <thrust/transform.h>
#include <limits>

#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"

#include "paddle/fluid/framework/generator.h"

namespace phi {

template <typename T>
struct GPUTruncatedNormal {
  T mean, std;
  T a_normal_cdf;
  T b_normal_cdf;
C
Chang Xu 已提交
36

37 38 39 40 41
  unsigned int seed;
  T numeric_min;

  __host__ __device__ GPUTruncatedNormal(T mean, T std, T numeric_min, int seed)
      : mean(mean), std(std), seed(seed), numeric_min(numeric_min) {
C
Chang Xu 已提交
42 43 44 45 46
    auto normal_cdf = [](float x) {
      return (1.0 + std::erf(x / std::sqrt(2.0))) / 2.0;
    };
    a_normal_cdf = normal_cdf((-2.0 - mean) / std);
    b_normal_cdf = normal_cdf((2.0 - mean) / std);
47 48 49 50 51
  }

  __host__ __device__ T operator()(const unsigned int n) const {
    thrust::minstd_rand rng;
    rng.seed(seed);
C
Chang Xu 已提交
52 53
    thrust::uniform_real_distribution<T> dist(2.0 * a_normal_cdf - 1.0,
                                              2.0 * b_normal_cdf - 1.0);
54 55
    rng.discard(n);
    T value = dist(rng);
C
Chang Xu 已提交
56
    return std::sqrt(2.0) * erfinvf(value) * std + mean;
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
  }
};

template <typename T>
struct TruncatedNormalOffset {
  T mean, std;
  T a_normal_cdf;
  T b_normal_cdf;
  unsigned int seed;
  T numeric_min;
  int offset_;

  __host__ __device__
  TruncatedNormalOffset(T mean, T std, T numeric_min, int seed, int offset)
      : mean(mean),
        std(std),
        seed(seed),
        numeric_min(numeric_min),
        offset_(offset) {
C
Chang Xu 已提交
76 77 78 79 80
    auto normal_cdf = [](float x) {
      return (1.0 + std::erf(x / std::sqrt(2.0))) / 2.0;
    };
    a_normal_cdf = normal_cdf((-2.0 - mean) / std);
    b_normal_cdf = normal_cdf((2.0 - mean) / std);
81 82 83 84 85
  }

  __host__ __device__ T operator()(const unsigned int n) const {
    thrust::minstd_rand rng;
    rng.seed(seed);
C
Chang Xu 已提交
86 87
    thrust::uniform_real_distribution<T> dist(2.0 * a_normal_cdf - 1.0,
                                              2.0 * b_normal_cdf - 1.0);
88 89
    rng.discard(n + offset_);
    T value = dist(rng);
C
Chang Xu 已提交
90
    return std::sqrt(2.0) * erfinvf(value) * std + mean;
91 92 93 94 95
  }
};

template <typename T, typename Context>
void TruncatedGaussianRandomKernel(const Context& dev_ctx,
96
                                   const std::vector<int>& shape,
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
                                   float mean,
                                   float std,
                                   int seed,
                                   DataType dtype,
                                   DenseTensor* out) {
  auto tensor = out;

  T* data = dev_ctx.template Alloc<T>(tensor);

  bool seed_flag = false;
  if (seed == 0) {
    std::random_device rd;
    seed = rd();
    seed_flag = true;
  }

  thrust::counting_iterator<int64_t> index_sequence_begin(0);
  int64_t size = tensor->numel();

  int device_id = dev_ctx.GetPlace().GetDeviceId();
  auto gen_cuda = paddle::framework::GetDefaultCUDAGenerator(device_id);

  if (gen_cuda->GetIsInitPy() && seed_flag) {
    auto seed_offset = gen_cuda->IncrementOffset(1);
    int64_t gen_offset = size * seed_offset.second;
    thrust::transform(index_sequence_begin,
                      index_sequence_begin + size,
                      thrust::device_ptr<T>(data),
                      TruncatedNormalOffset<T>(mean,
                                               std,
                                               std::numeric_limits<T>::min(),
                                               seed_offset.first,
                                               gen_offset));
  } else {
    thrust::transform(
        index_sequence_begin,
        index_sequence_begin + size,
        thrust::device_ptr<T>(data),
        GPUTruncatedNormal<T>(mean, std, std::numeric_limits<T>::min(), seed));
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(truncated_gaussian_random,
                   GPU,
                   ALL_LAYOUT,
                   phi::TruncatedGaussianRandomKernel,
                   float) {}