utils.py 49.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import atexit
16
import builtins
17
import copy
18
import functools
19
import importlib.util
20
import inspect
21
import os
22
import shutil
23
import sys
24
import tempfile
25
import textwrap
26
import types
27 28 29 30
import warnings
from importlib.machinery import SourceFileLoader

import astor
31
import numpy as np
32

33
import paddle
34
from paddle import fluid  # noqa: F401
35
from paddle.fluid import core, unique_name
36
from paddle.fluid.data_feeder import convert_dtype
37
from paddle.fluid.layer_helper import LayerHelper
38
from paddle.fluid.wrapped_decorator import signature_safe_contextmanager
39
from paddle.utils import gast
40

41 42 43 44 45 46 47 48 49 50 51 52 53
from .ast_utils import ast_to_source_code
from .static_analysis import StaticAnalysisVisitor
from .utils_helper import DYGRAPH_MODULE_PREFIX  # noqa: F401
from .utils_helper import DYGRAPH_TO_STATIC_MODULE_PREFIX  # noqa: F401
from .utils_helper import PADDLE_MODULE_PREFIX  # noqa: F401
from .utils_helper import NodeVarType  # noqa: F401
from .utils_helper import _is_api_in_module_helper  # noqa: F401
from .utils_helper import index_in_list  # noqa: F401
from .utils_helper import is_api_in_module  # noqa: F401
from .utils_helper import is_dygraph_api  # noqa: F401
from .utils_helper import is_numpy_api  # noqa: F401;
from .utils_helper import is_paddle_api  # noqa: F401

54 55
__all__ = []

56 57
# Note(Aurelius): Do not forget the dot `.` to distinguish other
# module such as paddlenlp.
58 59
GET_ARGS_FUNC_PREFIX = 'get_args'
SET_ARGS_FUNC_PREFIX = 'set_args'
60
ALREADY_D2S = '__already_d2s'
61
ARGS_NAME = '__args'
62 63
# NOTE(liym27): Please use `getattr(ast_node, ORIGI_INFO)` instead of . operation to get the original information of ast node.
ORIGI_INFO = "Original information of source code for ast node."
64

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
DEL_TEMP_DIR = True  # A flag to avoid atexit.register more than once
FOR_ITER_INDEX_PREFIX = '__for_loop_var_index'
FOR_ITER_TUPLE_PREFIX = '__for_loop_iter_tuple'
FOR_ITER_TARGET_PREFIX = '__for_loop_iter_target'
FOR_ITER_ITERATOR_PREFIX = '__for_loop_iter_iterator'
FOR_ITER_TUPLE_INDEX_PREFIX = '__for_loop_iter_tuple_index'
FOR_ITER_VAR_LEN_PREFIX = '__for_loop_var_len'
FOR_ITER_VAR_NAME_PREFIX = '__for_loop_iter_var'
FOR_ITER_ZIP_TO_LIST_PREFIX = '__for_loop_iter_zip'

RE_PYNAME = '[a-zA-Z0-9_]+'
RE_PYMODULE = r'[a-zA-Z0-9_]+\.'

# Assign not support float64, use float32 value as magic number.
RETURN_NO_VALUE_VAR_NAME = "__no_value_return_var"
RETURN_NO_VALUE_MAGIC_NUM = 1.77113e27

TRUE_FUNC_PREFIX = 'true_fn'
FALSE_FUNC_PREFIX = 'false_fn'

WHILE_CONDITION_PREFIX = 'while_condition'
WHILE_BODY_PREFIX = 'while_body'
FOR_CONDITION_PREFIX = 'for_loop_condition'
FOR_BODY_PREFIX = 'for_loop_body'

90 91 92 93 94 95 96
NO_SHAPE_VAR_TYPE = [
    core.VarDesc.VarType.READER,
    core.VarDesc.VarType.STEP_SCOPES,
    core.VarDesc.VarType.FEED_MINIBATCH,
    core.VarDesc.VarType.FETCH_LIST,
]

97 98 99

class BaseNodeVisitor(gast.NodeVisitor):
    """
100
    Implement customized NodeVisitor inherited from gast.NodeVisitor.
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    Ancestor nodes are traced to easily support more operations of currently
    visited node.
    """

    def __init__(self):
        self.ancestor_nodes = []

    def visit(self, node):
        """Visit a node."""
        self.ancestor_nodes.append(node)

        method = 'visit_' + node.__class__.__name__
        visitor = getattr(self, method, self.generic_visit)
        ret = visitor(node)
        self.ancestor_nodes.pop()
        return ret


119 120 121 122 123 124 125 126 127 128 129
dygraph_class_to_static_api = {
    "CosineDecay": "cosine_decay",
    "ExponentialDecay": "exponential_decay",
    "InverseTimeDecay": "inverse_time_decay",
    "NaturalExpDecay": "natural_exp_decay",
    "NoamDecay": "noam_decay",
    "PiecewiseDecay": "piecewise_decay",
    "PolynomialDecay": "polynomial_decay",
}


130 131 132 133 134 135 136
def data_layer_not_check(name, shape, dtype='float32', lod_level=0):
    """
    This function creates a Tensor on the global block. The created Tensor
    doesn't check the dtype and the shape of feed data because dygraph input
    data can be various-length. This API is used in translating dygraph into
    static graph.

137
     Note:
138 139 140 141 142 143 144 145 146 147
        The default :code:`stop_gradient` attribute of the Tensor created by
        this API is true, which means the gradient won't be passed backward
        through the data Tensor. Set :code:`var.stop_gradient = False` If
        user would like to pass backward gradient.

    Args:
       name (str): The name/alias of the Tensor, see :ref:`api_guide_Name`
           for more details.
       shape (list|tuple): List|Tuple of integers declaring the shape. You can
           set "None" at a dimension to indicate the dimension can be of any
148
           size. For example, it is useful to set changeable batch size as "None"
149 150 151 152 153 154 155 156 157 158 159 160
       dtype (np.dtype|VarType|str, optional): The type of the data. Supported
           dtype: bool, float16, float32, float64, int8, int16, int32, int64,
           uint8. Default: float32
       lod_level (int, optional): The LoD level of the LoDTensor. Usually users
           don't have to set this value. For more details about when and how to
           use LoD level, see :ref:`user_guide_lod_tensor` . Default: 0

    Returns:
        Tensor: The global Tensor that gives access to the data.
    """
    helper = LayerHelper('data', **locals())
    shape = list(shape)
161
    for i in range(len(shape)):
162 163 164
        if shape[i] is None:
            shape[i] = -1

165 166 167 168 169 170 171 172 173 174
    return helper.create_global_variable(
        name=name,
        shape=shape,
        dtype=dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
        stop_gradient=True,
        lod_level=lod_level,
        is_data=True,
        need_check_feed=False,
    )
175

176

177
def create_undefined_variable():
178 179 180
    var = data_layer_not_check(
        unique_name.generate("undefined_var"), [1], "float64"
    )
181
    var.stop_gradient = False
182 183 184 185
    # the variable is created in block(0), we append assign in block(0) either.
    helper = LayerHelper('create_undefined_variable', **locals())
    saved_block_ids = helper.main_program.current_block_idx
    helper.main_program.current_block_idx = 0
186
    paddle.assign(RETURN_NO_VALUE_MAGIC_NUM, var)
187
    helper.main_program.current_block_idx = saved_block_ids
188
    return var
189 190


191 192 193 194 195 196
class UndefinedVar:
    def __init__(self, name):
        self.name = name

    def check(self):
        raise UnboundLocalError(
197 198
            "local variable '{}' should be created before using it."
        )
199 200


201 202 203 204 205
class Dygraph2StaticException(Exception):
    def __init__(self, message):
        super().__init__(message)


206 207 208 209 210 211 212
def saw(x):
    if isinstance(x, UndefinedVar):
        return x.check()
    else:
        return x


213 214 215 216
def parse_arg_and_kwargs(function):
    """
    Returns full argument names as list. e.g ['x', 'y', 'z']
    """
217
    fullargspec = inspect.getfullargspec(function)
218 219 220 221 222 223 224 225 226
    arg_names = fullargspec.args
    if arg_names and 'self' == arg_names[0]:
        arg_names = fullargspec.args[1:]

    # parse default kwargs
    default_kwargs = {}
    default_values = fullargspec.defaults
    if default_values:
        assert len(default_values) <= len(arg_names)
227
        default_kwarg_names = arg_names[-len(default_values) :]
228 229 230 231 232
        default_kwargs = dict(zip(default_kwarg_names, default_values))

    return arg_names, default_kwargs


W
WeiXin 已提交
233 234 235 236
def parse_varargs_name(function):
    """
    Returns varargs name string of function. e.g: 'input' from `foo(x, *input)`
    """
237
    fullargspec = inspect.getfullargspec(function)
W
WeiXin 已提交
238 239 240 241
    varargs = fullargspec.varargs
    return varargs


242 243 244 245 246 247 248 249
def type_name(v):
    return type(v).__name__


def make_hashable(x, error_msg=None):
    """
    Makes input `x` hashable.

250
    For some unhashable objects, such as `dict/list/set/np.ndarray`,applying hash function by using their values.
251
    """
252
    if isinstance(x, (tuple, list, set)):
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
        return tuple(map(make_hashable, x))

    try:
        hash(x)
    except TypeError:
        if isinstance(x, np.ndarray):
            # Note: `tostring()` will return the binary data from np.ndarray that
            # means different value will lead to different hash code.
            return hash(x.tostring())
        elif isinstance(x, dict):
            return tuple(map(make_hashable, x.values()))

        error_msg = error_msg or "Requires a hashable object."
        raise ValueError(error_msg + " But received type: %s" % type_name(x))

    return x

270

271 272 273
# NOTE(Aurelius84): Consider the following paddle inner API as common case to
# apply @to_static code transformation as usual. Because they contains
# user-defined layer, like paddle.distributed.auto_parallel.helper.ProxyLayer.
274
AS_NOT_INNER_FUNC_LIST = {"paddle.nn.layer.container.Sequential"}
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296


def as_not_paddle_func(path):
    """
    Append API or class as ignored case for is_paddle_func, and they
    will be retured False while calling is_paddle_func(func).
    """
    global INNER_FUNC_WHITE_LIST
    AS_NOT_INNER_FUNC_LIST.add(path)


def is_paddle_func(func, ignore_white_list=True):
    """
    Return True if function is defined in Paddle module.
    Skip to check APIs in white list if specifying ignore_white_list as True.
    """

    def in_white_list(module, func_name):
        if func_name is None:
            return False
        return (module.__name__ + '.' + func_name) in AS_NOT_INNER_FUNC_LIST

297 298 299 300
    try:
        if isinstance(func, functools.partial):
            func = func.func

301
        func_name = getattr(func, '__name__', None)
302 303
        if inspect.ismethod(func):
            func_name = func.__self__.__class__.__name__
304
            func = func.__func__
305 306
        elif hasattr(func, '__class__'):  # for nn.Sequential
            func_name = func.__class__.__name__
307 308

        m = inspect.getmodule(func)
309 310 311
        flag = m is not None and m.__name__.startswith(PADDLE_MODULE_PREFIX)
        if ignore_white_list:
            flag = flag and not in_white_list(m, func_name)
312

313
        return flag
314 315
    except Exception:
        return False
316 317


318 319
def _delete_keywords_from(node):
    assert isinstance(node, gast.Call)
320
    func_src = astor.to_source(gast.gast_to_ast(node.func))
321

322
    full_args = eval(f"inspect.getfullargspec({func_src})")
323 324 325 326 327 328 329 330 331 332
    full_args_name = full_args[0]

    node.keywords = [k for k in node.keywords if k.arg in full_args_name]
    return


def to_static_api(dygraph_class):
    if dygraph_class in dygraph_class_to_static_api:
        return dygraph_class_to_static_api[dygraph_class]
    else:
333 334
        raise NotImplementedError(
            "Paddle dygraph API {} cannot be converted "
335 336
            "to static graph at present.".format(dygraph_class)
        )
337 338 339 340 341 342 343 344 345 346


def _add_keywords_to(node, dygraph_api_name):
    assert isinstance(node, gast.Call)
    if dygraph_api_name == "Linear":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "output_dim":
                ast_keyword.arg = "size"

        node.keywords.append(
347 348 349 350
            gast.keyword(
                arg="num_flatten_dims", value=gast.Constant(value=-1, kind=None)
            )
        )
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368

    if dygraph_api_name == "BilinearTensorProduct":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "output_dim":
                ast_keyword.arg = "size"

    if dygraph_api_name == "PRelu":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "input":
                ast_keyword.arg = "x"
    return


def to_static_ast(node, class_node):
    assert isinstance(node, gast.Call)
    assert isinstance(class_node, gast.Call)
    static_api = to_static_api(class_node.func.attr)

369 370 371 372 373 374 375 376 377 378 379
    node.func = gast.Attribute(
        attr=static_api,
        ctx=gast.Load(),
        value=gast.Attribute(
            attr='layers',
            ctx=gast.Load(),
            value=gast.Name(
                ctx=gast.Load(), id='fluid', annotation=None, type_comment=None
            ),
        ),
    )
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

    update_args_of_func(node, class_node, 'forward')

    node.args.extend(class_node.args)
    node.keywords.extend(class_node.keywords)
    _add_keywords_to(node, class_node.func.attr)
    _delete_keywords_from(node)

    gast.fix_missing_locations(node)

    return node


def update_args_of_func(node, dygraph_node, method_name):
    assert isinstance(node, gast.Call)
    if method_name not in ["__init__", "forward"]:
        raise ValueError(
            "The method name of class to update args should be '__init__' or 'forward'"
        )

400
    class_src = astor.to_source(gast.gast_to_ast(dygraph_node.func))
401

402
    if method_name == "__init__" or eval(
403
        f"issubclass({class_src}, paddle.nn.Layer)"
404
    ):
405
        full_args = eval(f"inspect.getfullargspec({class_src}.{method_name})")
406 407 408 409 410 411 412 413 414 415 416
        full_args_name = [
            arg_name for arg_name in full_args[0] if arg_name != "self"
        ]
    else:
        full_args_name = []
    added_keywords = []
    for idx, arg in enumerate(node.args):
        added_keywords.append(gast.keyword(arg=full_args_name[idx], value=arg))

    node.args = []
    node.keywords = added_keywords + node.keywords
417 418 419


def create_api_shape_node(tensor_shape_node):
420 421 422
    assert isinstance(
        tensor_shape_node, (gast.Name, gast.Attribute, gast.Subscript)
    )
423 424 425

    if isinstance(tensor_shape_node, gast.Name):
        api_shape_node = gast.Call(
426
            func=gast.parse('paddle.shape').body[0].value,
427
            args=[tensor_shape_node],
428 429
            keywords=[],
        )
430
        return api_shape_node
431 432 433

    if isinstance(tensor_shape_node, gast.Attribute):
        api_shape_node = gast.Call(
434
            func=gast.parse('paddle.shape').body[0].value,
435
            args=[tensor_shape_node.value],
436 437
            keywords=[],
        )
438 439 440 441 442 443
        return api_shape_node

    if isinstance(tensor_shape_node, gast.Subscript):
        result_node = copy.deepcopy(tensor_shape_node)
        result_node.value = create_api_shape_node(result_node.value)
        return result_node
444 445


446
def get_constant_variable_node(name, value, shape=[1], dtype='int64'):
447
    return gast.parse(
448
        f'{name} = paddle.full({str(shape)}, "{str(value)}", {dtype})'
449
    )
450 451 452 453


def get_attribute_full_name(node):
    assert isinstance(
454 455
        node, gast.Attribute
    ), "Input non-Attribute node to get attribute full name"
456 457 458
    return astor.to_source(gast.gast_to_ast(node)).strip()


459
def generate_name_node(name_ids, ctx=gast.Load(), gen_tuple_if_single=False):
460
    """
461 462 463 464 465 466 467
    If name_ids is list or tuple or set with multiple strings, this function
    generates gast.Tuple of gast.Name.
    If the name_ids is single string or contains only 1 string, this function
    returns gast.Name if gen_tuple_if_single==False else returns gast.Tuple
    with only one gast.Name

    This function is used at several gast.Return statements.
468
    """
469
    if isinstance(name_ids, str):
470 471
        name_ids = [name_ids]
    if not isinstance(name_ids, (list, tuple, set)):
472
        raise TypeError(
473 474 475
            'name_ids must be list or tuple or set, but received %s'
            % type(type(name_ids))
        )
476 477 478

    def create_node_for_name(name):
        if '.' not in name:
479 480 481
            return gast.Name(
                id=name, ctx=ctx, annotation=None, type_comment=None
            )
482 483 484
        return gast.parse(name).body[0].value

    gast_names = [create_node_for_name(name_id) for name_id in name_ids]
485
    if len(gast_names) == 1 and not gen_tuple_if_single:
486 487 488 489 490 491 492 493 494 495 496 497 498
        name_node = gast_names[0]
    else:
        name_node = gast.Tuple(elts=gast_names, ctx=ctx)
    return name_node


def create_funcDef_node(nodes, name, input_args, return_name_ids):
    """
    Wrapper all statements of nodes into one ast.FunctionDef, which can be
    called by ast.Call.
    """
    nodes = copy.copy(nodes)
    # add return statement
499 500
    if return_name_ids:
        nodes.append(gast.Return(value=generate_name_node(return_name_ids)))
501 502
    else:
        nodes.append(gast.Return(value=None))
503 504 505 506 507 508 509 510
    func_def_node = gast.FunctionDef(
        name=name,
        args=input_args,
        body=nodes,
        decorator_list=[],
        returns=None,
        type_comment=None,
    )
511 512 513
    return func_def_node


514 515 516 517 518 519 520 521 522
def create_assign_node(name, node):
    """
    Creates a `gast.Assign` node by given name_id as target and node as value.
    """
    targets = generate_name_node(name, ctx=gast.Store())
    assign_node = gast.Assign(targets=[targets], value=node)
    return targets, assign_node


523 524 525 526
def get_temp_dir():
    """
    Return @to_static temp directory.
    """
527
    dir_name = f"paddle/to_static_tmp/{os.getpid()}"
528 529 530 531 532 533 534 535 536 537 538
    temp_dir = os.path.join(os.path.expanduser('~/.cache'), dir_name)
    is_windows = sys.platform.startswith('win')
    if is_windows:
        temp_dir = os.path.normpath(temp_dir)

    if not os.path.exists(temp_dir):
        os.makedirs(temp_dir)

    return temp_dir


539
def ast_to_func(ast_root, dyfunc, delete_on_exit=True):
540 541
    """
    Transform modified AST of decorated function into python callable object.
542 543
    TODO: If only decorate one of inner function instead of decorating the main
    function, the other inner functions are invisible for the decorated function.
544
    """
545

546 547 548 549 550 551 552 553 554 555 556 557
    def remove_if_exit(dir_path):
        if os.path.exists(dir_path):
            shutil.rmtree(dir_path)

    def func_prefix(func):
        pre_fix = func.__name__
        if hasattr(func, '__self__'):
            try:
                pre_fix = func.__self__.__class__.__name__ + '_' + func.__name__
            except:
                pass
        return pre_fix
558

559
    source = ast_to_source_code(ast_root)
560
    source = _inject_import_statements() + source
561
    temp_dir = get_temp_dir()
562 563 564 565 566 567 568 569
    f = tempfile.NamedTemporaryFile(
        mode='w',
        prefix=func_prefix(dyfunc),
        suffix='.py',
        delete=False,
        dir=temp_dir,
        encoding='utf-8',
    )
570 571 572 573
    with f:
        module_name = os.path.basename(f.name[:-3])
        f.write(source)

574 575 576 577 578
    global DEL_TEMP_DIR
    if delete_on_exit and DEL_TEMP_DIR:
        # Clear temporary files in TEMP_DIR while exitting Python process
        atexit.register(remove_if_exit, dir_path=temp_dir)
        DEL_TEMP_DIR = False
579

580
    func_name = dyfunc.__name__
581 582 583 584
    loader = SourceFileLoader(module_name, f.name)
    spec = importlib.util.spec_from_loader(loader.name, loader)
    module = importlib.util.module_from_spec(spec)
    loader.exec_module(module)
W
WeiXin 已提交
585 586 587
    # The 'forward' or 'another_forward' of 'TranslatedLayer' cannot be obtained
    # through 'func_name'. So set the special function name '__i_m_p_l__'.
    if hasattr(module, '__i_m_p_l__'):
588
        callable_func = module.__i_m_p_l__
W
WeiXin 已提交
589 590 591 592
        callable_func.__name__ = func_name
    elif hasattr(module, func_name):
        callable_func = getattr(module, func_name)
    else:
593
        raise ValueError(
594 595 596
            'Function: %s doesn\'t exist in the Module transformed from AST.'
            % func_name
        )
597 598 599 600 601 602 603 604
    # After transform dygraph function into callable_func saved in tmp file,
    # it lost the global variables from imported statements or defined in source file.
    # Recovers the necessary variables by `__globals__`.
    recover_globals_attribute(dyfunc, callable_func)

    return callable_func, f.name


605 606
def _inject_import_statements():
    import_statements = [
607 608 609 610 611 612 613 614
        "import paddle",
        "from paddle import Tensor",
        "import paddle.fluid as fluid",
        "import paddle.jit.dy2static as _jst",
        "from typing import *",
        "import numpy as np",
        "import warnings",
        "warnings.filterwarnings('ignore', category=DeprecationWarning)",
615 616 617 618
    ]
    return '\n'.join(import_statements) + '\n'


619 620 621 622 623
def recover_globals_attribute(src_obj, dst_obj):
    attr_name = '__globals__'

    src_globals = getattr(src_obj, attr_name, {})
    dst_globals = getattr(dst_obj, attr_name, {})
624

625
    for k, v in src_globals.items():
626 627 628
        # ignore builtin attribute.
        if not (k.startswith('__') and k.endswith('__')):
            dst_globals[k] = v
629 630


631 632 633 634
def func_to_source_code(function, dedent=True):
    """
    Transforms function into raw string of source code.
    """
635 636
    if isinstance(function, functools.partial):
        function = function.func
637 638
    if not (inspect.isfunction(function) or inspect.ismethod(function)):
        raise TypeError(
639 640 641 642
            "The type of 'function' should be a function or method, but received {}.".format(
                type(function).__name__
            )
        )
643
    source_code_list, _ = inspect.getsourcelines(function)
644
    # Replace comments with blank lines so that error messages are not misplaced
645
    source_code_list = [
646 647
        line if not line.lstrip().startswith('#') else '\n'
        for line in source_code_list
648 649
    ]
    source_code = ''.join(source_code_list)
650 651 652 653 654 655
    if dedent:
        source_code = textwrap.dedent(source_code)

    return source_code


L
liym27 已提交
656 657 658 659
def is_candidate_node(node):
    """
    Nodes with specified type will be dependent on tensor.
    """
660 661 662 663 664 665 666 667 668 669 670
    is_compare_node = isinstance(
        node,
        (
            gast.Compare,
            gast.BoolOp,
            gast.UnaryOp,
            gast.For,
            gast.If,
            gast.While,
        ),
    )
L
liym27 已提交
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
    # TODO(Aurelius84): `.numpy()` may be an customized function,
    # and should consider a more elegant way to solve this problem.
    has_numpy_attr = ".numpy()" in ast_to_source_code(node)
    return is_compare_node or has_numpy_attr


def compare_with_none(node):
    """
    Whether the comparator of `gast.Compare` node is `None`.
    """
    if isinstance(node, gast.Compare):
        for child in [node.left, node.comparators]:
            # node.comparators is a list.
            if isinstance(child, list):
                child = child[0]
686 687 688
            if (isinstance(child, gast.Constant) and child.value is None) or (
                isinstance(child, gast.Name) and child.id == 'None'
            ):
L
liym27 已提交
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
                return True
    return False


class IsControlFlowVisitor(gast.NodeVisitor):
    """
    Judge whether the ast_node of control flow from Dygraph code dependent on paddle Tensor.
    `ast_node` can be gast.If, gast.For, gast.While, gast.If.test(gast.Compare, gast.BoolOp, gast.UnaryOp).

    If returns True,
    gast.If.test must meet at least one of the following requirements:
        1. involves at least one var whose type is Tensor.
        2. the Tensor var calls `.numpy()[]` interface or Tensor.shape is [1].
        3. involves Tensor.shape[i] and the shape[i] is unknown in compile time.
    gast.While must meet at least one of the requirements 1 to 5:
        4. has `break` statement.
        5. has `continue` statement.
706
    gast.For must meet at least one of the requirements 4 to 8:
L
liym27 已提交
707
        6. calls `range` function in `for` statement and the argument of range is Tensor.
708 709
        7. calls `enumerate` function in `for` statement and the argument of enumerate is Tensor.
        8. the iterable varaible in `for` statement is Tensor.
L
liym27 已提交
710 711 712 713 714 715 716 717 718 719 720 721 722
        TODO: Support non-range case

    The following examples should not be considered as control_flow_if:
        1. `if Tensor_var` or `if Tensor_var is None`
        2. if Tensor.shape[i] is determined with fixed value (not -1 or None)

    Note: pred in ConditionalBlock require variable, which means all vars should be Tensor
          or transformed into Tensor, like fill_constant(shape=[1], dtype='int32', value=Tensor.shape[i]).

    TODO: 1. need to deal with `tensor.shape[i]` which need to eval the data of shape[i],
             because reshape_op may be called before this statement.
    """

723 724 725
    def __init__(
        self, ast_node, static_analysis_visitor=None, node_var_type_map=None
    ):
L
liym27 已提交
726 727 728
        assert isinstance(
            ast_node, gast.AST
        ), "Type of input node should be gast.AST, but received %s." % type(
729 730
            ast_node
        )
L
liym27 已提交
731 732 733 734
        self.ast_root = ast_node
        if static_analysis_visitor is None:
            static_analysis_visitor = StaticAnalysisVisitor(ast_node)
        self.static_analysis_visitor = static_analysis_visitor
735 736
        self.node_to_wrapper_map = (
            self.static_analysis_visitor.get_node_to_wrapper_map()
L
liym27 已提交
737 738 739 740 741 742 743 744
        )
        self.node_var_type_map = node_var_type_map

        self.is_control_flow_num = 0
        self._compare_node_tenor_set = set()

    def transform(self):
        node = self.ast_root
745 746 747 748 749 750 751 752
        if isinstance(node, gast.If):
            self._visit_If(node)
        elif isinstance(node, gast.For):
            self._visit_For(node)
        elif isinstance(node, gast.While):
            self._visit_While(node)
        else:
            self.visit(node)
L
liym27 已提交
753 754 755 756 757 758 759 760 761
        return self.is_control_flow_num > 0

    def _visit_If(self, node):
        assert isinstance(node, gast.If)
        self.visit(node.test)
        return

    def _visit_For(self, node):
        assert isinstance(node, gast.For)
762 763 764
        if isinstance(node.iter, gast.Call):
            # for in range(var[0]|var.numpy()[0]) or for in enumerate(var|var.numpy())
            if isinstance(node.iter.func, gast.Name):
765 766 767 768
                if (
                    node.iter.func.id == "range"
                    or node.iter.func.id == "enumerate"
                ):
769 770 771 772 773 774 775 776 777 778
                    for arg in node.iter.args:
                        self.visit(arg)
                else:
                    return
            # for in var.numpy()
            elif isinstance(node.iter.func, gast.Attribute):
                if node.iter.func.attr == 'numpy':
                    self._visit_Call(node.iter)
                else:
                    return
779 780
            else:
                return
781 782 783
        elif isinstance(node.iter, gast.Name):
            # for in var
            self.visit(node.iter)
784
        else:
L
liym27 已提交
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
            return

        for child_node in gast.walk(node):
            if isinstance(child_node, (gast.Continue, gast.Break)):
                self._visit_break_continue(child_node)
        return

    def _visit_While(self, node):
        assert isinstance(node, gast.While)
        test = node.test
        self.generic_visit(test)
        for child_node in gast.walk(node):
            if isinstance(child_node, (gast.Continue, gast.Break)):
                self._visit_break_continue(child_node)
        return

    def _visit_break_continue(self, node):
        assert isinstance(node, (gast.Break, gast.Continue))
        wrapper_node = self.node_to_wrapper_map.get(node)
        if not wrapper_node:
            # Transformed node is not in node_to_wrapper_map
            return

        while wrapper_node.parent:
            parent_node = wrapper_node.parent.node
            if isinstance(parent_node, (gast.For, gast.While)):
                if parent_node is self.ast_root:
                    self.is_control_flow_num += 1
                    return
                else:
                    return

            wrapper_node = wrapper_node.parent

        return

    def visit_BoolOp(self, node):
        for i, child in enumerate(node.values):
823
            self.visit(child)
L
liym27 已提交
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
        return node

    def visit_Compare(self, node):
        pre_control_flow_num = self.is_control_flow_num
        if not compare_with_none(node):
            self.generic_visit(node)
            for child in gast.walk(node):
                if isinstance(child, gast.Subscript):
                    self._visit_Subscript(child)
        if self.is_control_flow_num > pre_control_flow_num:
            self._compare_node_tenor_set.add(node)
        return node

    def _visit_Subscript(self, node):
        self.generic_visit(node)
        if hasattr(node, 'value') and isinstance(node.value, gast.Call):
            self._visit_Call(node.value)
        return node

    def _visit_Call(self, node):
        assert isinstance(node, gast.Call)
        if isinstance(node.func, gast.Attribute):
            attr_node = node.func
            if attr_node.attr == 'numpy':
                self.is_control_flow_num += 1

    def visit_Call(self, node):
        self._visit_Call(node)
        if is_paddle_api(node):
            self.is_control_flow_num += 1
        return node

    def visit_Name(self, node):
        if self._is_node_with_tensor(node, node.id):
            self.is_control_flow_num += 1
        return node

    def visit_Constant(self, node):
        if self._is_node_with_tensor(node, node.value):
            self.is_control_flow_num += 1
        return node

    def _is_node_with_tensor(self, node, name_id):
        # Look up the node_var_type_map by name_id.
        if self.node_var_type_map:
869
            if name_id and isinstance(name_id, str):
L
liym27 已提交
870
                var_type = self.node_var_type_map.get(name_id, None)
871
                if var_type and var_type & NodeVarType.TENSOR_TYPES:
L
liym27 已提交
872 873
                    return True
        # if not found, look up the node_to_wrapper_map by node.
874
        wrapper_node = self.node_to_wrapper_map.get(node, None)
L
liym27 已提交
875
        if wrapper_node is not None:
876
            if wrapper_node.node_var_type & NodeVarType.TENSOR_TYPES:
L
liym27 已提交
877 878 879 880 881 882
                return True

        return False

    def get_compare_nodes_with_tensor(self):
        return self._compare_node_tenor_set
883 884


885 886 887 888 889 890 891 892 893 894
# NOTE: inspect.unwrap() exits in PY3 but not in PY2.
def unwrap(func):
    """
    Returns the object wrapped by decorators.
    """

    def _is_wrapped(f):
        return hasattr(f, '__wrapped__')

    unwrapped_f = func
895
    while _is_wrapped(unwrapped_f):
896 897 898
        unwrapped_f = unwrapped_f.__wrapped__

    return unwrapped_f
899 900


C
Chen Weihang 已提交
901
def input_specs_compatible(src_input_specs, desired_input_specs):
902 903 904 905
    """
    Returns True if the two input specs are compatible, otherwise False.

    args:
906 907 908 909
        src_input_spec (list or tuple[InputSpec et.al]): list/tuple of
            paddle.static.InputSpec or int/str et.al
        desired_input_specs (list or tuple[InputSpec et.al]): list/tuple of
            paddle.static.InputSpec or int/str et.al
910 911
    """
    len_specs = len(src_input_specs)
C
Chen Weihang 已提交
912 913
    if len_specs != len(desired_input_specs):
        # NOTE(chenweihang): if the input_spec of jit.save is a subset of
914
        # input_spec of to_static, also compatible
C
Chen Weihang 已提交
915 916 917 918
        for spec in src_input_specs:
            if spec not in desired_input_specs:
                return False
    else:
919 920 921
        for (src_spec, desired_spec) in zip(
            src_input_specs, desired_input_specs
        ):
922
            if isinstance(src_spec, paddle.static.InputSpec) or isinstance(
923 924
                desired_spec, paddle.static.InputSpec
            ):
925 926 927 928
                if not _compatible_tensor_spec(src_spec, desired_spec):
                    return False
            else:
                if not _compatible_non_tensor_spec(src_spec, desired_spec):
C
Chen Weihang 已提交
929 930
                    return False

931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
    return True


def _compatible_tensor_spec(src_spec, desired_spec):
    """
    Check whether two tensor type spec is compatible.
    """
    for spec in [src_spec, desired_spec]:
        if not isinstance(spec, paddle.static.InputSpec):
            return False
    src_shape = src_spec.shape
    other_shape = desired_spec.shape
    len_shape = len(src_shape)
    if len_shape != len(other_shape):
        return False
    for j in range(len_shape):
        if src_shape[j] is None or src_shape[j] < 0:
            continue
        if other_shape[j] is None or other_shape[j] < 0:
            continue
        if src_shape[j] != other_shape[j]:
            return False

    src_dtype = convert_dtype(src_spec.dtype)
    other_dtype = convert_dtype(desired_spec.dtype)
    if src_dtype != other_dtype:
        return False
958 959

    return True
960

961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981

def _compatible_non_tensor_spec(src_spec, desired_spec):
    """
    Check whether two non-tensor type spec is compatible.
    """

    def hash_value(spec):
        try:
            hash_val = make_hashable(spec)
        except:
            hash_val = None
        return hash_val

    src_hash_val = hash_value(src_spec)
    desired_hash_val = hash_value(desired_spec)

    if src_hash_val != desired_hash_val:
        return False
    else:
        return True

982

983 984
class NameScope:
    def __init__(self):
985
        """
986 987
        A NameScope is a object which manager all the variable names.
        only FunctionDef and Controlflow node will have a namescope property.
988

989
        type can be "function" and "controlflow"
990

991
        we don't analyze the read only variable because they don't affect the analysis.
992 993 994 995 996 997
        """
        self.globals = set()
        self.nonlocals = set()
        self.args = set()
        self.father = None  # point to the nearest function name scope.
        self.w_vars = set()  # all qualified + normal names been stored
998
        self.created = set()  # useful for control flow compatibility
999
        # only valid in control_flow nodes
1000 1001
        # may be remove later.
        self.push_pop_vars = set()  # we call push and pop in the vars
1002 1003 1004 1005 1006

    def set_father(self, father):
        self.father = father

    def existed_vars(self):
1007 1008
        """vars existing in current scope.
        they must not contain qualified names.
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
        """
        local_vars = self.w_vars - self.globals - self.nonlocals - self.args
        return set(filter(lambda x: '.' not in x, local_vars))

    def created_vars(self):
        return self.created

    def modified_vars(self):
        # may be globals / non-locals / args / qualified names and created_vars
        return self.w_vars

1020
    def variadic_length_vars(self):
1021
        """
1022
        At present, we do not support global append, such as
1023

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
        import numpy as np
        a = []
        def func():
            a.append() # global names `a`, we will raise a warning.
            p.append(a, 1) # global names `np`, we will raise a warning.
        """
        non_global_push_pop_names = []
        for var in self.push_pop_vars:
            if self._is_simple_name(var) and self.is_global_var(var):
                warnings.warn(
                    f"Find variable `{var}` defined in global scope"
                    f" and call `{var}.append() or {var}.pop()`"
                    f", which will be ignored and never be transfered into"
1037 1038
                    f" tensor array."
                )
1039 1040 1041
            else:
                non_global_push_pop_names.append(var)
        return set(non_global_push_pop_names)
1042

1043 1044
    def control_flow_vars(self):
        valid_names = self.w_vars
1045
        tmp = (self.father.global_vars & valid_names,)
1046 1047
        return {"global": tmp, "nonlocal": self.w_vars - tmp}

1048
    def _is_simple_name(self, name):
1049 1050
        if '.' in name or '[' in name:
            return False
1051 1052 1053
        return True

    def is_global_var(self, name):
1054
        """
1055
        Return whether the name is a var created in global scope.
1056
        Search from bottom to top. If it is not created or modified,
1057 1058 1059 1060
        it means global vars; otherwise, it means local vars.
        Only valid after FunctionNameLivenessAnalysis visitor.
        """
        assert self._is_simple_name(
1061 1062
            name
        ), "is_global_var accept a simple name, but get `{name}`."
1063 1064
        ancestor = self
        while ancestor is not None:
1065 1066 1067 1068
            if name in ancestor.globals:
                return True
            if name in (ancestor.nonlocals | ancestor.w_vars):
                return False
1069 1070 1071 1072 1073
            ancestor = ancestor.father
        return True

    def is_local_var(self, name):
        return not self.is_global_var(name)
1074 1075 1076 1077 1078 1079

    def merge_from(self, name_scope):
        self.globals |= name_scope.globals
        self.nonlocals |= name_scope.nonlocals
        self.args |= name_scope.args
        self.w_vars |= name_scope.w_vars
1080
        self.push_pop_vars |= name_scope.push_pop_vars
1081 1082 1083


class FunctionNameLivenessAnalysis(gast.NodeVisitor):
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
    """analyze the liveness of a function.

    every variables stored in this scope will be collected,
    in addition with global/nonlocal information and
    push_pop information.

    1. global variable is stored in node.var_globals.
    2. nonlocal variable is stored in node.var_nonlocals.
    3. arguments is stored in node.var_args.
    4. if a variable's push and pop attribute is called,
       it will be collected in push_pop_vars. They are
       used for transformation to tensor_array.
       NOTE: push_pop_vars **may not** in w_vars.
       a.push(0) don't modify the variable a, but the content
       of a.

    For example:

    def func(*args, **kargs):
        a = 12
        global i,j
        nonlocal x,y
        print(a)
        i = k
        b = []
        c = [1,2,3]
        for m in range(10):
            q = 12
            b.push(1)
            c.pop()

    After this visitor we have:
    # node is the FunctionDef node with name: "func"
    node.pd_scope = NameScope(
        globals = ['i', 'j'],
        nonlocals = ['x', 'y'],
        args = ['args', 'kargs'],
        wr_vars = ['a', 'i', 'q', 'm', 'c', 'b']
        push_pop_vars = ['b', 'c']
    )
1124 1125 1126 1127 1128 1129 1130 1131
    """

    def __init__(self, root_node):
        self.scope_node_stack = []  # controlflow, functiondef node
        self.visit(root_node)

    def _reset_name_scope(self, node):
        # always reset the node as empty namescope.
1132
        node.pd_scope = NameScope()
1133 1134 1135

    def _get_name_scope(self, node):
        if not hasattr(node, "pd_scope"):
1136
            node.pd_scope = NameScope()
1137 1138 1139 1140 1141 1142
        return node.pd_scope

    def _current_name_scope(self):
        return self._get_name_scope(self.scope_node_stack[-1])

    def _father_name_scope(self):
1143 1144
        if len(self.scope_node_stack) == 1:
            return None
1145 1146 1147
        return self._get_name_scope(self.scope_node_stack[-2])

    def _nearest_function_scope(self):
1148 1149
        if len(self.scope_node_stack) == 1:
            return None
1150 1151 1152 1153
        for node in self.scope_node_stack[-2::-1]:
            if isinstance(node, gast.FunctionDef):
                return self._get_name_scope(node)

1154
    def visit_ListComp(self, node):
1155 1156 1157
        """[ i for i in range(10) ]
        In this case, `i` will not created in FunctionScope.
        We don't collect `i` by not calling generic_visit.
1158 1159 1160 1161
        """
        pass

    def visit_DictComp(self, node):
1162
        """the same as ListComp."""
1163 1164
        pass

1165 1166 1167 1168 1169 1170 1171 1172 1173
    def visit_Name(self, node):
        self.generic_visit(node)
        write_context = (gast.Store, gast.AugStore, gast.Del)
        if isinstance(node.ctx, write_context):
            self._current_name_scope().w_vars.add(node.id)

    def visit_FunctionDef(self, node):
        def pre_func():
            self._current_name_scope().args |= set(
1174 1175
                self._get_argument_names(node)
            )
1176 1177

        def post_func():
1178 1179
            """NOTE: why we need merge w_vars and push_pop_vars here ?
            because we do ifelse_transformer after loop_transformer. Loops will changed into functioons. but we know this function will be called in if. so we add w_vars to father function scope.
1180 1181
            """
            control_flow_function_def = [
1182 1183 1184 1185 1186 1187
                WHILE_BODY_PREFIX,
                WHILE_BODY_PREFIX,
                FOR_CONDITION_PREFIX,
                FOR_BODY_PREFIX,
                TRUE_FUNC_PREFIX,
                FALSE_FUNC_PREFIX,
1188 1189 1190 1191
            ]

            def is_control_flow_def_node():
                for prefix in control_flow_function_def:
1192 1193
                    if node.name.startswith(prefix):
                        return True
1194 1195 1196
                return False

            if self._father_name_scope() and is_control_flow_def_node():
1197 1198 1199 1200 1201 1202
                self._father_name_scope().w_vars |= (
                    self._current_name_scope().w_vars
                )
                self._father_name_scope().push_pop_vars |= (
                    self._current_name_scope().push_pop_vars
                )
1203 1204 1205 1206

        self._visit_scope_node(node, pre_func, post_func)

    def _visit_scope_node(self, node, pre_func, post_func):
1207 1208
        """scope node main visit logic.
        pre_func and post_func is callbacks
1209 1210 1211
        """
        self._reset_name_scope(node)
        self.scope_node_stack.append(node)
1212
        self._current_name_scope().set_father(self._nearest_function_scope())
1213 1214
        if pre_func:
            pre_func()
1215
        self.generic_visit(node)
1216 1217
        if post_func:
            post_func()
1218 1219 1220 1221 1222
        self.scope_node_stack.pop()

    def _visit_controlflow_node(self, node):
        def post_func():
            self._father_name_scope().merge_from(self._current_name_scope())
1223
            self._nearest_function_scope().merge_from(
1224 1225 1226 1227 1228 1229
                self._current_name_scope()
            )
            self._current_name_scope().created = (
                self._nearest_function_scope().existed_vars()
                - node.before_created
            )
1230
            # gather created vars into father and used in CreateUndefinedVarTransform
1231 1232 1233
            self._nearest_function_scope().created |= (
                self._current_name_scope().created
            )
1234 1235

        def pre_func():
1236
            node.before_created = self._nearest_function_scope().existed_vars()
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261

        self._visit_scope_node(node, pre_func, post_func)

    def visit_For(self, node):
        self._visit_controlflow_node(node)

    def visit_While(self, node):
        self._visit_controlflow_node(node)

    def visit_If(self, node):
        self._visit_controlflow_node(node)

    def visit_Global(self, node):
        self._current_name_scope().globals |= set(node.names)

    def visit_Nonlocal(self, node):
        self._current_name_scope().nonlocals |= set(node.names)

    def visit_Attribute(self, node):
        self.generic_visit(node)
        write_context = (gast.Store, gast.AugStore, gast.Del)
        if isinstance(node.ctx, write_context):
            name = ast_to_source_code(node).strip()
            self._current_name_scope().w_vars.add(name)

1262 1263 1264 1265 1266 1267 1268 1269 1270
    def visit_Subscript(self, node):
        self.generic_visit(node)
        write_context = (gast.Store, gast.AugStore, gast.Del)
        if isinstance(node.ctx, write_context):
            while isinstance(node.value, gast.Subscript):
                node = node.value
            if isinstance(node.value, gast.Name):
                self._current_name_scope().w_vars.add(node.value.id)

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
    def visit_Call(self, node):
        self.generic_visit(node)
        if not isinstance(node.func, gast.Attribute):
            return
        variadic_length_method = ['append', 'pop']
        if node.func.attr not in variadic_length_method:
            return
        # we don't treat push and pop as a write operator. such as a[i]=10 is not modify a.
        name = ast_to_source_code(node.func.value).strip()
        self._current_name_scope().push_pop_vars.add(name)

1282
    def _get_argument_names(self, node):
1283 1284 1285
        """get all arguments name in the functiondef node.
        this node is local to the function and shouldn't
        be created.
1286 1287
        """
        assert isinstance(
1288 1289
            node, gast.FunctionDef
        ), "Input node is not function define node"
1290
        names = list(node.args.args)
1291 1292 1293 1294 1295 1296
        names.append(node.args.vararg)
        names.append(node.args.kwarg)
        names = [i.id for i in names if i is not None]
        return names


1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
def create_get_args_node(names):
    """
    Create get_args function as follows:

        def get_args_0():
            nonlocal x, y
            return x, y
    """

    def empty_node():
        func_def = """
        def {func_name}():
            return
1310 1311 1312
        """.format(
            func_name=unique_name.generate(GET_ARGS_FUNC_PREFIX)
        )
1313 1314 1315
        return gast.parse(textwrap.dedent(func_def)).body[0]

    assert isinstance(names, (list, tuple))
1316
    node = create_nonlocal_stmt_nodes(names)
1317 1318
    if not names:
        return empty_node()
1319
    if node == []:
1320 1321
        nonlocal_vars = "\n"
    else:
1322
        nonlocal_vars = ast_to_source_code(node[0])
1323 1324
    template = """
    def {func_name}():
1325
        {nonlocal_vars}
1326
        return {vars},
1327 1328 1329
    """
    func_def = template.format(
        func_name=unique_name.generate(GET_ARGS_FUNC_PREFIX),
1330
        nonlocal_vars=nonlocal_vars,
1331 1332
        vars=",".join(names),
    )
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
    return gast.parse(textwrap.dedent(func_def)).body[0]


def create_set_args_node(names):
    """
    Create set_args function as follows:

        def set_args_0(__args):
            nonlocal x, y
            x, y = __args
    """

    def empty_node():
        func_def = """
        def {func_name}({args}):
            pass
1349 1350 1351
        """.format(
            func_name=unique_name.generate(SET_ARGS_FUNC_PREFIX), args=ARGS_NAME
        )
1352 1353 1354
        return gast.parse(textwrap.dedent(func_def)).body[0]

    assert isinstance(names, (list, tuple))
1355
    node = create_nonlocal_stmt_nodes(names)
1356 1357
    if not names:
        return empty_node()
1358
    if node == []:
1359 1360
        nonlocal_vars = "\n"
    else:
1361
        nonlocal_vars = ast_to_source_code(node[0])
1362 1363
    template = """
    def {func_name}({args}):
1364
        {nonlocal_vars}
1365
        {vars}, = {args}
1366 1367 1368 1369
    """
    func_def = template.format(
        func_name=unique_name.generate(SET_ARGS_FUNC_PREFIX),
        args=ARGS_NAME,
1370
        nonlocal_vars=nonlocal_vars,
1371 1372
        vars=",".join(names),
    )
1373 1374 1375
    return gast.parse(textwrap.dedent(func_def)).body[0]


1376
def create_nonlocal_stmt_nodes(names):
1377 1378 1379
    assert isinstance(names, (list, tuple))

    mapped = list(filter(lambda n: '.' not in n, names))
1380
    mapped = list(filter(lambda n: '[' not in n, mapped))
1381
    names = sorted(
1382 1383
        mapped, key=mapped.index
    )  # to keep the order, we can't use set() to unique
1384 1385
    if not names:
        return []
1386
    func_code = "nonlocal {}".format(','.join(names))
1387
    return [gast.parse(func_code).body[0]]
1388 1389 1390


class GetterSetterHelper:
1391 1392 1393 1394
    """we have two classes of names in setter and getter function:
    w_vars(loop_vars) + push_pop_vars
    To simplify the setter logic in convert_while and convert_cond,
    we extract the helper class here.
1395 1396 1397
    """

    def __init__(self, getter_func, setter_func, *name_lists):
1398 1399
        name_lists = ([] if x is None else x for x in name_lists)
        name_sets = (set(x) for x in name_lists)
1400 1401 1402
        self._union = list(
            functools.reduce(lambda x, y: x | y, name_sets, set())
        )
1403 1404 1405 1406 1407 1408 1409 1410 1411
        self._union.sort()
        self.getter = getter_func
        self.setter = setter_func
        self.name2id = {name: idx for idx, name in enumerate(self._union)}

    def union(self):
        return self._union

    def get(self, names):
1412 1413
        if names is None:
            names = []
1414
        vars = self.getter()
1415
        if vars is None:
1416
            return ()
1417
        for n in names:
1418 1419 1420 1421 1422
            assert (
                n in self.name2id
            ), "the name `{}` not in name union set`{}`.".format(
                n, self.name2id.keys()
            )
1423
        return tuple(vars[self.name2id[n]] for n in names)
1424 1425

    def set(self, names, values):
1426 1427 1428 1429
        if names is None:
            names = []
        if values is None:
            values = []
1430
        vars = self.getter()
1431 1432
        if vars is None:
            return
1433
        for n in names:
1434 1435 1436 1437 1438
            assert (
                n in self.name2id
            ), "the name `{}` not in name union set`{}`.".format(
                n, self.name2id.keys()
            )
1439
        vars = list(vars)
1440
        indices = [self.name2id[n] for n in names]
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
        for i, v in zip(indices, values):
            vars[i] = v
        self.setter(vars)


def create_name_str(name_ids):
    """
    Return "('x', 'y')" for [x, y]
    """
    if not name_ids:
        return 'None'

1453
    names_str = ["'%s'" % (name.replace("'", "\\'")) for name in name_ids]
1454
    return "(%s, )" % ','.join(names_str)
1455 1456 1457 1458 1459 1460 1461


def _param_grad_names(program_desc, params):
    """
    Parse PARAM@GARD name from original train and infer program.
    """
    names = []
1462
    # NOTE: `names` and `params` must be in the same order so that
1463 1464
    # the param grad name can be set correctly in the run_program.
    for param in params:
1465 1466 1467 1468 1469 1470 1471 1472 1473
        candidate = []
        suffix = param.name + '@GRAD'
        for var in program_desc.block(0).all_vars():
            var_name = var.name()
            if var_name.endswith(suffix):
                prefix_count = var_name.count('grad/')
                if 'grad/' * prefix_count + suffix == var_name:
                    candidate.append(var_name)

1474 1475 1476
        if candidate:
            names.append(max(candidate, key=lambda name: name.count('grad/')))
        else:
1477
            names.append(suffix)
1478 1479 1480 1481 1482 1483 1484 1485 1486
    return names


def _out_grad_names(program_desc, fwd_end_op_index, out_size):
    """
    Parse Out@GARD name from original train and infer program.
    """
    names = []
    for i in range(
1487 1488
        fwd_end_op_index,
        min(fwd_end_op_index + out_size, program_desc.block(0).op_size()),
1489 1490
    ):
        op = program_desc.block(0).op(i)
1491 1492 1493 1494 1495 1496
        # If prim forward op, fill_any_like will be decomposite as fill_constant.
        if core._is_fwd_prim_enabled():
            target = ('fill_any_like', 'fill_constant')
        else:
            target = 'fill_any_like'
        if op.type() in target:
1497 1498 1499
            var_name = op.output('Out')[0]
            names.append(var_name)
    return names
1500 1501


1502 1503 1504 1505
def prim_or_cinn_is_enabled(build_strategy, backend):
    if backend == 'CINN':
        return True

1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
    if build_strategy is not None and build_strategy.build_cinn_pass:
        return True

    if core._is_bwd_prim_enabled() or core._is_fwd_prim_enabled():
        return True

    env_flags = [
        'FLAGS_prim_forward',
        'FLAGS_prim_backward',
        'FLAGS_prim_all',
        'FLAGS_use_cinn',
    ]
    for flag in env_flags:
        value = os.getenv(flag)
        if value is None:
            continue
        elif value.lower() in ['true', '1']:
            return True
    return False
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540


def is_builtin(func, name=None):
    """predict whether a function is a builtin function with name={name}.
    if name == None, then any builtin function will return True
    """

    def name_judge():
        return name is None or func.__name__ == name

    if isinstance(func, types.BuiltinFunctionType) and name_judge():
        return True
    elif func in builtins.__dict__.values() and name_judge():
        return True
    else:
        return False
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555


@signature_safe_contextmanager
def backend_guard(backend):
    core.check_and_set_prim_all_enabled()
    orign_fwd = core._is_fwd_prim_enabled()
    orign_bwd = core._is_bwd_prim_enabled()

    if backend == 'CINN':
        core._set_prim_all_enabled(True)
    try:
        yield
    finally:
        core._set_prim_forward_enabled(orign_fwd)
        core._set_prim_backward_enabled(orign_bwd)