phi_utils.cc 13.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "paddle/fluid/framework/phi_utils.h"

17 18
#include <sstream>

19
#include "paddle/fluid/framework/convert_utils.h"
20
#include "paddle/fluid/framework/lod_tensor.h"
Z
Zeng Jinle 已提交
21
#include "paddle/fluid/framework/op_info.h"
22
#include "paddle/fluid/framework/selected_rows_utils.h"
23
#include "paddle/fluid/string/string_helper.h"
24 25 26
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/compat/op_utils.h"
#include "paddle/phi/core/kernel_factory.h"
27
#include "paddle/phi/core/tensor_utils.h"
28
#include "paddle/phi/core/type_defs.h"
29 30 31 32

namespace paddle {
namespace framework {

Z
Zeng Jinle 已提交
33 34 35 36 37
class KernelArgsNameMakerByOpProto : public KernelArgsNameMaker {
 public:
  explicit KernelArgsNameMakerByOpProto(
      const framework::proto::OpProto* op_proto)
      : op_proto_(op_proto) {
38 39 40
    PADDLE_ENFORCE_NOT_NULL(
        op_proto_,
        platform::errors::InvalidArgument("Op proto cannot be nullptr."));
Z
Zeng Jinle 已提交
41 42 43 44
  }

  ~KernelArgsNameMakerByOpProto() {}

C
Chen Weihang 已提交
45 46 47
  const paddle::small_vector<const char*>& GetInputArgsNames() override;
  const paddle::small_vector<const char*>& GetOutputArgsNames() override;
  const paddle::small_vector<const char*>& GetAttrsArgsNames() override;
Z
Zeng Jinle 已提交
48

49
  phi::KernelSignature GetKernelSignature();
Z
Zeng Jinle 已提交
50 51 52 53 54 55 56

 private:
  DISABLE_COPY_AND_ASSIGN(KernelArgsNameMakerByOpProto);

 private:
  const framework::proto::OpProto* op_proto_;

C
Chen Weihang 已提交
57 58 59
  paddle::small_vector<const char*> input_names_;
  paddle::small_vector<const char*> output_names_;
  paddle::small_vector<const char*> attr_names_;
Z
Zeng Jinle 已提交
60 61
};

62
OpKernelType TransPhiKernelKeyToOpKernelType(const phi::KernelKey& kernel_key) {
63
  proto::VarType::Type data_type =
64
      paddle::framework::TransToProtoVarType(kernel_key.dtype());
65
  // no need to set current device id here
66
  platform::Place place = phi::TransToPhiPlace(kernel_key.backend(), false);
67
  DataLayout data_layout = kernel_key.layout();
68
  LibraryType library_type = LibraryType::kPlain;
69
  if (kernel_key.backend() == phi::Backend::ONEDNN) {
70
    library_type = LibraryType::kMKLDNN;
71
  } else if (kernel_key.backend() == phi::Backend::GPUDNN) {
72
    library_type = LibraryType::kCUDNN;
73 74
  } else if (kernel_key.backend() == phi::Backend::KPS) {
    library_type = LibraryType::kKP;
75 76 77 78 79 80 81
  } else {
    // do nothing
  }
  // TODO(chenweihang): the customized_type_value is lost
  return OpKernelType(data_type, place, data_layout, library_type);
}

82
phi::KernelKey TransOpKernelTypeToPhiKernelKey(
83
    const OpKernelType& kernel_type) {
84
  phi::Backend backend = phi::TransToPhiBackend(kernel_type.place_);
85 86 87 88 89
  switch (kernel_type.library_type_) {
    case LibraryType::kCUDNN:
      backend = phi::Backend::GPUDNN;
      break;
    case LibraryType::kMKLDNN:
90
      backend = phi::Backend::ONEDNN;
91 92 93 94 95 96
      break;
    case LibraryType::kKP:
      backend = phi::Backend::KPS;
      break;
    default:
      break;
97
  }
98 99
  return phi::KernelKey(backend,
                        kernel_type.data_layout_,
100
                        framework::TransToPhiDataType(kernel_type.data_type_));
101 102
}

H
HongyuJia 已提交
103
phi::KernelKey FallBackToCpu(const phi::KernelKey& kernel_key,
104
                             const framework::OperatorBase& op) {
105
#ifdef PADDLE_WITH_XPU
H
HongyuJia 已提交
106
  if (kernel_key.backend() == phi::Backend::XPU ||
107
      paddle::platform::is_in_xpu_black_list(op.Type())) {
108
    VLOG(3) << "phi missing XPU kernel: " << op.Type()
H
HongyuJia 已提交
109 110
            << ", expected_kernel_key:" << kernel_key
            << ", fallback to CPU one!";
111 112
    return phi::KernelKey(
        phi::Backend::CPU, kernel_key.layout(), kernel_key.dtype());
113 114 115
  }
#endif
#ifdef PADDLE_WITH_MLU
H
HongyuJia 已提交
116
  if (kernel_key.backend() == phi::Backend::MLU) {
117
    VLOG(3) << "phi missing MLU kernel: " << op.Type()
H
HongyuJia 已提交
118 119
            << ", expected_kernel_key:" << kernel_key
            << ", fallback to CPU one!";
120 121
    return phi::KernelKey(
        phi::Backend::CPU, kernel_key.layout(), kernel_key.dtype());
122 123 124
  }
#endif
#ifdef PADDLE_WITH_IPU
H
HongyuJia 已提交
125
  if (kernel_key.backend() == phi::Backend::IPU) {
126
    VLOG(3) << "phi missing IPU kernel: " << op.Type()
H
HongyuJia 已提交
127 128
            << ", expected_kernel_key:" << kernel_key
            << ", fallback to CPU one!";
129 130
    return phi::KernelKey(
        phi::Backend::CPU, kernel_key.layout(), kernel_key.dtype());
131 132 133
  }
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
H
HongyuJia 已提交
134
  auto place = phi::TransToPhiPlace(kernel_key.backend());
135 136 137 138 139
  bool is_custom_place = platform::is_custom_place(place);
  if (is_custom_place ||
      phi::backends::custom_device::is_in_custom_black_list(op.Type())) {
    std::string info = is_custom_place ? "phi missing " : "phi in black list ";
    VLOG(3) << info << place.GetDeviceType() << " kernel: " << op.Type()
H
HongyuJia 已提交
140 141
            << ", expected_kernel_key:" << kernel_key
            << ", fallback to CPU one!";
142 143
    return phi::KernelKey(
        phi::Backend::CPU, kernel_key.layout(), kernel_key.dtype());
144 145
  }
#endif
146
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
H
HongyuJia 已提交
147 148
  if (kernel_key.backend() == phi::Backend::GPU ||
      kernel_key.backend() == phi::Backend::GPUDNN) {
149 150 151 152 153
    PADDLE_THROW(
        phi::errors::NotFound("The kernel (%s) with key %s is not found and "
                              "GPU kernel cannot fallback to CPU one.",
                              op.Type(),
                              kernel_key));
154 155 156
  }
#endif

157
  return phi::KernelKey();
158 159
}

C
Chen Weihang 已提交
160
const paddle::small_vector<const char*>&
161 162 163 164 165 166 167 168
KernelArgsNameMakerByOpProto::GetInputArgsNames() {
  for (int i = 0; i < op_proto_->inputs_size(); ++i) {
    auto& in = op_proto_->inputs()[i];
    auto& in_name = in.name();
    if ((in.has_extra() && in.extra()) || (in.has_quant() && in.quant())) {
      continue;
    }
    // If contains dispensable input, we should override the
169
    // OpArgumentMapping method self in phi/ops/compat dir
170 171 172
    if (in.has_dispensable() && in.dispensable()) {
      continue;
    }
173 174 175 176 177
    input_names_.emplace_back(in_name.c_str());
  }
  if (VLOG_IS_ON(10)) {
    std::ostringstream sout;
    sout << "PhiKernel inputs: ";
178 179
    std::copy(input_names_.begin(),
              input_names_.end(),
180 181
              std::ostream_iterator<const char*>(sout, ", "));
    VLOG(10) << sout.str();
182 183 184 185
  }
  return input_names_;
}

C
Chen Weihang 已提交
186
const paddle::small_vector<const char*>&
187 188 189 190
KernelArgsNameMakerByOpProto::GetOutputArgsNames() {
  for (int i = 0; i < op_proto_->outputs_size(); ++i) {
    auto& out = op_proto_->outputs()[i];
    auto& out_name = out.name();
191 192 193
    if ((out.has_extra() && out.extra()) || (out.has_quant() && out.quant())) {
      continue;
    }
194 195 196 197 198
    output_names_.emplace_back(out_name.c_str());
  }
  if (VLOG_IS_ON(10)) {
    std::ostringstream sout;
    sout << "PhiKernel outputs: ";
199 200
    std::copy(output_names_.begin(),
              output_names_.end(),
201 202
              std::ostream_iterator<const char*>(sout, ", "));
    VLOG(10) << sout.str();
203 204 205 206
  }
  return output_names_;
}

C
Chen Weihang 已提交
207
const paddle::small_vector<const char*>&
208 209 210 211
KernelArgsNameMakerByOpProto::GetAttrsArgsNames() {
  for (int i = 0; i < op_proto_->attrs_size(); ++i) {
    auto& attr = op_proto_->attrs()[i];
    auto& attr_name = attr.name();
212 213 214 215
    if (attr_name == "use_mkldnn" || attr_name == "use_cudnn" ||
        attr_name == "op_role" || attr_name == "op_role_var" ||
        attr_name == "op_namescope" || attr_name == "op_callstack" ||
        attr_name == "op_device") {
216 217 218 219 220 221
      continue;
    }
    if ((attr.has_extra() && attr.extra()) ||
        (attr.has_quant() && attr.quant())) {
      continue;
    }
222 223 224 225 226
    attr_names_.emplace_back(attr_name.c_str());
  }
  if (VLOG_IS_ON(10)) {
    std::ostringstream sout;
    sout << "PhiKernel attributes: ";
227 228
    std::copy(attr_names_.begin(),
              attr_names_.end(),
229 230
              std::ostream_iterator<const char*>(sout, ", "));
    VLOG(10) << sout.str();
231 232 233 234
  }
  return attr_names_;
}

235 236
phi::KernelSignature KernelArgsNameMakerByOpProto::GetKernelSignature() {
  return phi::KernelSignature(
237 238 239 240
      phi::TransToPhiKernelName(op_proto_->type()).c_str(),
      GetInputArgsNames(),
      GetAttrsArgsNames(),
      GetOutputArgsNames());
241 242
}

243 244 245 246 247 248 249
std::once_flag kernel_sig_map_init_flag;

void InitDefaultKernelSignatureMap() {
  std::call_once(kernel_sig_map_init_flag, [] {
    for (const auto& pair : paddle::framework::OpInfoMap::Instance().map()) {
      const auto& op_type = pair.first;
      const auto* op_proto = pair.second.proto_;
250
      if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(op_type) &&
251 252
          op_proto) {
        paddle::framework::KernelArgsNameMakerByOpProto maker(op_proto);
253
        VLOG(10) << "Register `" << op_type << "` kernel signature:";
254
        phi::DefaultKernelSignatureMap::Instance().Insert(
255 256 257 258 259 260
            op_type, std::move(maker.GetKernelSignature()));
      }
    }
  });
}

261
static void SetAllocationForUninitializedDenseTensor(
262
    phi::DenseTensor* dense_tensor, const platform::Place& place) {
263 264
  int dtype_size = dense_tensor->dtype() == DataType::UNDEFINED
                       ? 0
265
                       : phi::SizeOf(dense_tensor->dtype());
266 267 268 269 270 271
  int64_t numels = product(dense_tensor->dims());
  numels = numels < 0 ? 0 : numels;
  auto tmp_allocation_ptr = memory::Alloc(place, numels * dtype_size);
  auto& deleter = tmp_allocation_ptr.get_deleter();
  auto* allocation_ptr = tmp_allocation_ptr.release();
  auto shared_allocation =
272
      std::shared_ptr<phi::Allocation>(allocation_ptr, deleter);
273 274 275 276

  dense_tensor->ResetHolder(shared_allocation);
}

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
phi::Scalar MakePhiScalarFromVar(const framework::Variable& variable) {
  auto expected_place = phi::TransToPhiPlace(phi::Backend::CPU);
  if (variable.IsType<phi::DenseTensor>()) {
    const auto& tensor = variable.Get<phi::DenseTensor>();
    PADDLE_ENFORCE_EQ(
        tensor.numel(),
        1UL,
        platform::errors::InvalidArgument("The DenseTensor used to construct "
                                          "the Scalar contains more than 1 "
                                          "value, it contains `%d` values.",
                                          tensor.numel()));
    if (!platform::is_same_place(tensor.place(), expected_place)) {
      phi::DenseTensor tmp_tensor;
      framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
      return {tmp_tensor};
    } else {
      return {tensor};
    }
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupport casting input `%s` type to Scalar when call pt "
        "kernel.",
        framework::ToTypeName(variable.Type())));
  }
}

phi::IntArray MakePhiIntArrayFromVar(const framework::Variable& variable) {
  if (variable.IsType<phi::DenseTensor>()) {
    const auto& tensor = variable.Get<phi::DenseTensor>();
H
Huang Jiyi 已提交
306
    return phi::IntArray(tensor);
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupport casting input `%s` type to IntArray when call pt "
        "kernel.",
        framework::ToTypeName(variable.Type())));
  }
}

// TODO(chentianyu03): Inplace with IntArray constructor
phi::IntArray MakePhiIntArrayFromVarList(
    const std::vector<framework::Variable*>& variable_list) {
  if (variable_list.size() == 0) {
    return phi::IntArray();
  }
  auto expected_place = phi::TransToPhiPlace(phi::Backend::CPU);

  std::vector<int64_t> vector_data;
  vector_data.reserve(variable_list.size());

  for (auto* var : variable_list) {
327
    phi::DataType data_type;
328 329 330
    if (var->IsType<phi::DenseTensor>()) {
      const auto& tensor = var->Get<phi::DenseTensor>();
      data_type = tensor.dtype();
331
      if (data_type == phi::DataType::INT64) {
332 333 334 335 336 337 338 339 340
        const auto& tensor = var->Get<phi::DenseTensor>();
        if (tensor.IsInitialized() &&
            !platform::is_same_place(tensor.place(), expected_place)) {
          phi::DenseTensor tmp_tensor;
          framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
          vector_data.push_back(*tmp_tensor.data<int64_t>());
        } else {
          vector_data.push_back(*tensor.data<int64_t>());
        }
341
      } else if (data_type == phi::DataType::INT32) {
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
        const auto& tensor = var->Get<phi::DenseTensor>();
        if (tensor.IsInitialized() &&
            !platform::is_same_place(tensor.place(), expected_place)) {
          phi::DenseTensor tmp_tensor;
          framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
          vector_data.push_back(*tmp_tensor.data<int32_t>());
        } else {
          vector_data.push_back(*tensor.data<int32_t>());
        }
      } else {
        PADDLE_THROW(phi::errors::InvalidArgument(
            "Data type error. When cast a LoDTensor to VectorTensor, "
            "the data type of LoDTensor must be int32 or int64, "
            "but now data type is %s.",
            data_type));
      }
    } else {
      PADDLE_THROW(phi::errors::Unimplemented(
          "Unsupport casting input `%s` type to VectorTensor when call pt "
          "kernel.",
          framework::ToTypeName(var->Type())));
    }
  }

  phi::IntArray result{vector_data};
  result.SetFromTensor(true);

  return result;
}

372 373
}  // namespace framework
}  // namespace paddle