test_imperative_mnist.py 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np

import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.optimizer import SGDOptimizer
22
from paddle.fluid.dygraph.nn import Pool2D, Linear
23
from test_imperative_base import new_program_scope
24
from utils import DyGraphProgramDescTracerTestHelper
J
Jiabin Yang 已提交
25
from paddle.fluid.framework import _test_eager_guard, _in_legacy_dygraph
26 27


M
minqiyang 已提交
28
class SimpleImgConvPool(fluid.dygraph.Layer):
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    def __init__(
        self,
        num_channels,
        num_filters,
        filter_size,
        pool_size,
        pool_stride,
        pool_padding=0,
        pool_type='max',
        global_pooling=False,
        conv_stride=1,
        conv_padding=0,
        conv_dilation=1,
        conv_groups=1,
        act=None,
        use_cudnn=False,
        param_attr=None,
        bias_attr=None,
    ):
48
        super().__init__()
M
minqiyang 已提交
49

50 51 52 53
        self._conv2d = paddle.nn.Conv2D(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
54 55 56 57
            stride=conv_stride,
            padding=conv_padding,
            dilation=conv_dilation,
            groups=conv_groups,
58
            weight_attr=None,
59 60 61 62 63 64 65 66 67 68 69
            bias_attr=None,
        )

        self._pool2d = Pool2D(
            pool_size=pool_size,
            pool_type=pool_type,
            pool_stride=pool_stride,
            pool_padding=pool_padding,
            global_pooling=global_pooling,
            use_cudnn=use_cudnn,
        )
70

M
minqiyang 已提交
71
    def forward(self, inputs):
M
minqiyang 已提交
72 73 74
        x = self._conv2d(inputs)
        x = self._pool2d(x)
        return x
75 76


M
minqiyang 已提交
77
class MNIST(fluid.dygraph.Layer):
78
    def __init__(self):
79
        super().__init__()
80

81 82 83
        self._simple_img_conv_pool_1 = SimpleImgConvPool(
            1, 20, 5, 2, 2, act="relu"
        )
84

85 86 87
        self._simple_img_conv_pool_2 = SimpleImgConvPool(
            20, 50, 5, 2, 2, act="relu"
        )
M
minqiyang 已提交
88

89
        self.pool_2_shape = 50 * 4 * 4
M
minqiyang 已提交
90
        SIZE = 10
91 92 93 94 95 96 97 98 99 100 101
        scale = (2.0 / (self.pool_2_shape**2 * SIZE)) ** 0.5
        self._fc = Linear(
            self.pool_2_shape,
            10,
            param_attr=fluid.param_attr.ParamAttr(
                initializer=fluid.initializer.NormalInitializer(
                    loc=0.0, scale=scale
                )
            ),
            act="softmax",
        )
M
minqiyang 已提交
102 103 104 105

    def forward(self, inputs):
        x = self._simple_img_conv_pool_1(inputs)
        x = self._simple_img_conv_pool_2(x)
106
        x = fluid.layers.reshape(x, shape=[-1, self.pool_2_shape])
M
minqiyang 已提交
107 108 109 110 111
        x = self._fc(x)
        return x


class TestImperativeMnist(unittest.TestCase):
112 113 114 115 116 117 118 119 120
    def reader_decorator(self, reader):
        def _reader_imple():
            for item in reader():
                image = np.array(item[0]).reshape(1, 28, 28)
                label = np.array(item[1]).astype('int64').reshape(1)
                yield image, label

        return _reader_imple

121
    def func_test_mnist_float32(self):
122
        seed = 90
M
minqiyang 已提交
123
        epoch_num = 1
124 125 126
        batch_size = 128
        batch_num = 50

127 128
        traced_layer = None

M
minqiyang 已提交
129
        with fluid.dygraph.guard():
130 131 132
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

133
            mnist = MNIST()
134 135 136
            sgd = SGDOptimizer(
                learning_rate=1e-3, parameter_list=mnist.parameters()
            )
137 138 139

            batch_py_reader = fluid.io.PyReader(capacity=1)
            batch_py_reader.decorate_sample_list_generator(
140 141 142 143 144 145 146
                paddle.batch(
                    self.reader_decorator(paddle.dataset.mnist.train()),
                    batch_size=batch_size,
                    drop_last=True,
                ),
                places=fluid.CPUPlace(),
            )
147

M
minqiyang 已提交
148
            mnist.train()
149
            dy_param_init_value = {}
150

151 152
            helper = DyGraphProgramDescTracerTestHelper(self)
            program = None
M
minqiyang 已提交
153
            for epoch in range(epoch_num):
154 155 156 157 158 159
                for batch_id, data in enumerate(batch_py_reader()):
                    if batch_id >= batch_num:
                        break
                    img = data[0]
                    dy_x_data = img.numpy()
                    label = data[1]
L
lujun 已提交
160
                    label.stop_gradient = True
M
minqiyang 已提交
161

J
Jiabin Yang 已提交
162
                    if batch_id % 10 == 0 and _in_legacy_dygraph():
163
                        cost, traced_layer = paddle.jit.TracedLayer.trace(
164 165
                            mnist, inputs=img
                        )
166 167 168 169
                        if program is not None:
                            self.assertTrue(program, traced_layer.program)
                        program = traced_layer.program
                        traced_layer.save_inference_model(
170 171
                            './infer_imperative_mnist'
                        )
172 173 174
                    else:
                        cost = mnist(img)

175 176 177 178
                    if traced_layer is not None:
                        cost_static = traced_layer([img])
                        helper.assertEachVar(cost, cost_static)

M
minqiyang 已提交
179
                    loss = fluid.layers.cross_entropy(cost, label)
180
                    avg_loss = paddle.mean(loss)
M
minqiyang 已提交
181

L
lujun 已提交
182
                    dy_out = avg_loss.numpy()
M
minqiyang 已提交
183 184 185

                    if epoch == 0 and batch_id == 0:
                        for param in mnist.parameters():
L
lujun 已提交
186
                            dy_param_init_value[param.name] = param.numpy()
M
minqiyang 已提交
187

L
lujun 已提交
188
                    avg_loss.backward()
M
minqiyang 已提交
189 190 191 192 193
                    sgd.minimize(avg_loss)
                    mnist.clear_gradients()

                    dy_param_value = {}
                    for param in mnist.parameters():
L
lujun 已提交
194
                        dy_param_value[param.name] = param.numpy()
195 196 197 198 199

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

200 201 202 203 204
            exe = fluid.Executor(
                fluid.CPUPlace()
                if not core.is_compiled_with_cuda()
                else fluid.CUDAPlace(0)
            )
205

206
            mnist = MNIST()
M
minqiyang 已提交
207
            sgd = SGDOptimizer(learning_rate=1e-3)
208 209 210 211 212 213 214 215 216
            train_reader = paddle.batch(
                paddle.dataset.mnist.train(),
                batch_size=batch_size,
                drop_last=True,
            )

            img = fluid.layers.data(
                name='pixel', shape=[1, 28, 28], dtype='float32'
            )
217 218
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            cost = mnist(img)
M
minqiyang 已提交
219
            loss = fluid.layers.cross_entropy(cost, label)
220
            avg_loss = paddle.mean(loss)
M
minqiyang 已提交
221
            sgd.minimize(avg_loss)
222 223 224 225

            # initialize params and fetch them
            static_param_init_value = {}
            static_param_name_list = []
M
minqiyang 已提交
226
            for param in mnist.parameters():
227 228
                static_param_name_list.append(param.name)

229 230 231 232
            out = exe.run(
                fluid.default_startup_program(),
                fetch_list=static_param_name_list,
            )
233 234 235 236

            for i in range(len(static_param_name_list)):
                static_param_init_value[static_param_name_list[i]] = out[i]

M
minqiyang 已提交
237 238
            for epoch in range(epoch_num):
                for batch_id, data in enumerate(train_reader()):
239 240
                    if batch_id >= batch_num:
                        break
241 242 243 244 245 246 247 248
                    static_x_data = np.array(
                        [x[0].reshape(1, 28, 28) for x in data]
                    ).astype('float32')
                    y_data = (
                        np.array([x[1] for x in data])
                        .astype('int64')
                        .reshape([batch_size, 1])
                    )
M
minqiyang 已提交
249 250 251

                    fetch_list = [avg_loss.name]
                    fetch_list.extend(static_param_name_list)
252 253 254 255

                    if traced_layer is not None:
                        traced_layer([static_x_data])

256 257 258 259 260
                    out = exe.run(
                        fluid.default_main_program(),
                        feed={"pixel": static_x_data, "label": y_data},
                        fetch_list=fetch_list,
                    )
M
minqiyang 已提交
261 262 263 264

                    static_param_value = {}
                    static_out = out[0]
                    for i in range(1, len(out)):
265 266 267
                        static_param_value[static_param_name_list[i - 1]] = out[
                            i
                        ]
M
minqiyang 已提交
268

269 270 271
        np.testing.assert_allclose(
            dy_x_data.all(), static_x_data.all(), rtol=1e-05
        )
272

273
        for key, value in static_param_init_value.items():
274 275 276
            np.testing.assert_allclose(
                value, dy_param_init_value[key], rtol=1e-05
            )
M
minqiyang 已提交
277

278
        np.testing.assert_allclose(static_out, dy_out, rtol=1e-05)
M
minqiyang 已提交
279

280
        for key, value in static_param_value.items():
281 282 283
            np.testing.assert_allclose(
                value, dy_param_value[key], rtol=1e-05, atol=1e-05
            )
284

285 286 287 288 289
    def test_mnist_float32(self):
        with _test_eager_guard():
            self.func_test_mnist_float32()
        self.func_test_mnist_float32()

290 291

if __name__ == '__main__':
H
hong 已提交
292
    paddle.enable_static()
293
    unittest.main()