nan_inf_utils_detail.cc 21.5 KB
Newer Older
W
WangXi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/details/nan_inf_utils_detail.h"
16 17

#include "paddle/fluid/framework/details/nan_inf_utils.h"
W
WangXi 已提交
18
#include "paddle/fluid/framework/op_proto_maker.h"
19
#include "paddle/fluid/framework/scope.h"
20 21

#ifdef PADDLE_WITH_ASCEND_CL
22
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
23
#endif
24
#include "paddle/fluid/framework/convert_utils.h"
25

W
WangXi 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
namespace paddle {
namespace framework {
namespace details {

static std::once_flag white_list_init_flag;

static int op_role_nan_inf_white_list = 0;

static constexpr int FORWARD = 0x10000;

// lazy init
static const std::unordered_map<std::string, int>& role_str2int() {
  /* In op_proto_maker.h
   * framework::OpRole::kForward      = 0x0000,
   * framework::OpRole::kBackward     = 0x0001,
   * framework::OpRole::kOptimize     = 0x0002,
   * framework::OpRole::kRPC          = 0x0004,
   * framework::OpRole::kDist         = 0x0008,
   * framework::OpRole::kLRSched      = 0x0010,
   * framework::OpRole::kLoss         = 0x0100,
   * framework::OpRole::kNotSpecified = 0x1000,
   */
  static const std::unordered_map<std::string, int> _role_str2int = {
      {"forward", FORWARD}, /* kForward=0, can't filter */
      {"backward", static_cast<int>(framework::OpRole::kBackward)},
      {"optimize", static_cast<int>(framework::OpRole::kOptimize)},
      {"rpc", static_cast<int>(framework::OpRole::kRPC)},
      {"dist", static_cast<int>(framework::OpRole::kDist)},
      {"lrsched", static_cast<int>(framework::OpRole::kLRSched)},
      {"loss", static_cast<int>(framework::OpRole::kLoss)},
      {"default", static_cast<int>(framework::OpRole::kNotSpecified)},
  };
  return _role_str2int;
}

static std::unordered_set<std::string>& op_type_nan_inf_white_list() {
  static std::unordered_set<std::string> _op_type_nan_inf_white_list = {
      "coalesce_tensor", /* This Op will alloc tensor, and may not init space */
  };
  return _op_type_nan_inf_white_list;
}

static std::unordered_map<std::string, std::vector<std::string>>&
op_var_nan_inf_white_list() {
  static std::unordered_map<std::string, std::vector<std::string>>
      _op_var_nan_inf_white_list = {
          /* encoded & gather var consist of idx&val, can't judge directly */
          {"dgc", {"__dgc_encoded__", "__dgc_gather__"}},
      };
  return _op_var_nan_inf_white_list;
}

static void InitWhiteListFormEnv() {
  // op_type_skip and op_var_skip may be NULL.
  // So need init static value in there, prevent thread competition.
  // NOTE. role_str2int needn't do this for it only used in this func.
  op_type_nan_inf_white_list();
  op_var_nan_inf_white_list();

  // export PADDLE_INF_NAN_SKIP_OP="op0,op1,op2"
  // export PADDLE_INF_NAN_SKIP_ROLE="role1,role2,role3"
  // export PADDLE_INF_NAN_SKIP_VAR="op0:var0,op0:var1,op1:var0"
  const char* op_type_skip = std::getenv("PADDLE_INF_NAN_SKIP_OP");
  const char* op_role_skip = std::getenv("PADDLE_INF_NAN_SKIP_ROLE");
  const char* op_var_skip = std::getenv("PADDLE_INF_NAN_SKIP_VAR");

  if (op_type_skip != NULL) {
    std::stringstream ss(op_type_skip);
    std::string op_type;
    while (std::getline(ss, op_type, ',')) {
      op_type_nan_inf_white_list().emplace(op_type);
    }
  }

  if (op_role_skip != NULL) {
    std::stringstream ss(op_role_skip);
    std::string op_role;
    while (std::getline(ss, op_role, ',')) {
      PADDLE_ENFORCE_EQ(role_str2int().find(op_role) != role_str2int().end(),
                        true,
                        platform::errors::InvalidArgument(
                            "Skip role must be one of "
                            "{forward,backward,optimize,rpc,dist,lrsched,loss,"
                            "default}, instead of %s",
                            op_role));
      op_role_nan_inf_white_list |= role_str2int().at(op_role);
    }
  }

  if (op_var_skip != NULL) {
    std::stringstream ss(op_var_skip);
    std::string op_var;
    while (std::getline(ss, op_var, ',')) {
      auto pos = op_var.find(":");
      PADDLE_ENFORCE_EQ(
121 122
          pos != std::string::npos,
          true,
W
WangXi 已提交
123 124 125 126 127 128 129 130 131 132 133
          platform::errors::InvalidArgument(
              "Skip var format must be op:var, instead of %s", op_var));
      std::string op = op_var.substr(0, pos);
      std::string var = op_var.substr(pos + 1);

      op_var_nan_inf_white_list()[op].emplace_back(var);
    }
  }
}

template <typename T>
134 135 136 137 138
static void PrintNanInf(const T* value,
                        const size_t numel,
                        int print_num,
                        const std::string& op_type,
                        const std::string& var_name,
139 140 141
                        bool abort = true) {
  T min_value = std::numeric_limits<T>::max();
  T max_value = std::numeric_limits<T>::min();
W
WangXi 已提交
142 143 144 145 146 147 148 149 150 151 152 153
  size_t nan_count, inf_count, num_count;
  nan_count = inf_count = num_count = 0;

  // CPU print num value
  for (size_t i = 0; i < numel; ++i) {
    size_t count = 0;
    if (std::isnan(value[i])) {
      count = nan_count++;
    } else if (std::isinf(value[i])) {
      count = inf_count++;
    } else {
      count = num_count++;
154 155
      min_value = std::min(min_value, value[i]);
      max_value = std::max(max_value, value[i]);
W
WangXi 已提交
156 157 158
    }

    if (count < static_cast<size_t>(print_num)) {
159 160 161 162
      printf("numel:%lu index:%lu value:%f\n",
             static_cast<uint64_t>(numel),
             static_cast<uint64_t>(i),
             static_cast<float>(value[i]));
W
WangXi 已提交
163 164
    }
  }
165 166 167
  printf(
      "In cpu, there has %lu,%lu,%lu nan,inf,num. "
      "And in num, min_value is %f, max_value is %f\n",
168 169 170 171
      static_cast<uint64_t>(nan_count),
      static_cast<uint64_t>(inf_count),
      static_cast<uint64_t>(num_count),
      static_cast<double>(min_value),
172 173 174
      static_cast<double>(max_value));
  if (abort) {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
175 176
        "There are `nan` or `inf` in tensor (%s) of operator (%s).",
        var_name,
177 178
        op_type));
  }
W
WangXi 已提交
179 180 181 182 183 184 185
}

// openmp 4.0, reduction with fp16
#if defined _OPENMP && _OPENMP >= 201307
// more detail see: 180 page of
// https://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
#pragma omp declare reduction(+ : paddle::platform::float16 : omp_out += omp_in)
186 187
#pragma omp declare reduction(+ : paddle::platform::bfloat16 : omp_out += \
                              omp_in)
188 189 190 191 192
#pragma omp declare reduction(+ : paddle::platform::complex < \
                                  float > : omp_out += omp_in)
#pragma omp declare reduction(+ : paddle::platform::complex < \
                                  double > : omp_out += omp_in)

W
WangXi 已提交
193 194 195
#endif

template <typename T>
196 197 198
static void CheckNanInf(const T* value,
                        const size_t numel,
                        int print_num,
W
WangXi 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
                        const std::string& op_type,
                        const std::string& var_name) {
  T sum = static_cast<T>(0.0);
#if defined _OPENMP && _OPENMP >= 201307
#pragma omp parallel for simd reduction(+ : sum)
#elif defined _OPENMP
#pragma omp parallel for reduction(+ : sum)
#endif
  for (size_t i = 0; i < numel; ++i) {
    sum += (value[i] - value[i]);
  }

  if (std::isnan(sum) || std::isinf(sum)) {
    PrintNanInf(value, numel, print_num, op_type, var_name);
  }
}

#if defined _OPENMP && _OPENMP >= 201307
// openmp4.0 not need to specialization fp16
#elif defined _OPENMP
template <>
void CheckNanInf<paddle::platform::float16>(
221 222 223 224 225
    const paddle::platform::float16* value,
    const size_t numel,
    int print_num,
    const std::string& op_type,
    const std::string& var_name) {
W
WangXi 已提交
226
  float sum = 0.0f;
227 228 229 230 231 232 233 234 235 236 237 238
#pragma omp parallel for reduction(+ : sum)
  for (size_t i = 0; i < numel; ++i) {
    sum += static_cast<float>(value[i] - value[i]);
  }

  if (std::isnan(sum) || std::isinf(sum)) {
    PrintNanInf(value, numel, print_num, op_type, var_name);
  }
}

template <>
void CheckNanInf<paddle::platform::bfloat16>(
239 240 241 242 243
    const paddle::platform::bfloat16* value,
    const size_t numel,
    int print_num,
    const std::string& op_type,
    const std::string& var_name) {
244
  float sum = 0.0f;
W
WangXi 已提交
245 246 247 248 249 250 251 252 253
#pragma omp parallel for reduction(+ : sum)
  for (size_t i = 0; i < numel; ++i) {
    sum += static_cast<float>(value[i] - value[i]);
  }

  if (std::isnan(sum) || std::isinf(sum)) {
    PrintNanInf(value, numel, print_num, op_type, var_name);
  }
}
254

255 256
template <>
void CheckNanInf<paddle::platform::complex<float>>(
257 258 259 260 261
    const paddle::platform::complex<float>* value,
    const size_t numel,
    int print_num,
    const std::string& op_type,
    const std::string& var_name) {
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
  float real_sum = 0.0f;
#pragma omp parallel for reduction(+ : real_sum)
  for (size_t i = 0; i < numel; ++i) {
    real_sum += (value[i].real - value[i].real);
  }

  float imag_sum = 0.0f;
#pragma omp parallel for reduction(+ : imag_sum)
  for (size_t i = 0; i < numel; ++i) {
    imag_sum += (value[i].imag - value[i].imag);
  }

  if (std::isnan(real_sum) || std::isinf(real_sum) || std::isnan(imag_sum) ||
      std::isinf(imag_sum)) {
    // hot fix for compile failed in gcc4.8
    // here also need print detail info of nan or inf later
    PADDLE_THROW(platform::errors::PreconditionNotMet(
279 280
        "There are `nan` or `inf` in tensor (%s) of operator (%s).",
        var_name,
281 282 283 284 285
        op_type));
  }
}

template <>
286
    void CheckNanInf < paddle::platform::complex < double >>>
287 288 289 290 291
    (const paddle::platform::complex<double>* value,
     const size_t numel,
     int print_num,
     const std::string& op_type,
     const std::string& var_name) {
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
  double real_sum = 0.0;
#pragma omp parallel for reduction(+ : real_sum)
  for (size_t i = 0; i < numel; ++i) {
    real_sum += (value[i].real - value[i].real);
  }

  double imag_sum = 0.0;
#pragma omp parallel for reduction(+ : imag_sum)
  for (size_t i = 0; i < numel; ++i) {
    imag_sum += (value[i].imag - value[i].imag);
  }

  if (std::isnan(real_sum) || std::isinf(real_sum) || std::isnan(imag_sum) ||
      std::isinf(imag_sum)) {
    // hot fix for compile failed in gcc4.8
    // here also need print detail info of nan or inf later
    PADDLE_THROW(platform::errors::PreconditionNotMet(
309 310
        "There are `nan` or `inf` in tensor (%s) of operator (%s).",
        var_name,
311 312 313 314
        op_type));
  }
}

W
WangXi 已提交
315 316 317 318 319
#endif

template <>
template <typename T>
void TensorCheckerVisitor<platform::CPUDeviceContext>::apply(
320 321 322 323 324
    typename std::enable_if<
        std::is_floating_point<T>::value ||
        std::is_same<T, ::paddle::platform::complex<float>>::value ||
        std::is_same<T, ::paddle::platform::complex<double>>::value>::type*)
    const {
W
WangXi 已提交
325 326
  // use env strategy control in future, -1=print_all.
  int print_num = 3;
327 328
  CheckNanInf(
      tensor_.data<T>(), tensor_.numel(), print_num, op_type_, var_name_);
W
WangXi 已提交
329 330 331 332 333 334 335
}

template <>
void tensor_check<platform::CPUDeviceContext>(const std::string& op_type,
                                              const std::string& var_name,
                                              const framework::Tensor& tensor,
                                              const platform::Place& place) {
336 337
  TensorCheckerVisitor<platform::CPUDeviceContext> vistor(
      op_type, var_name, tensor, place);
338
  VisitDataType(framework::TransToProtoVarType(tensor.dtype()), vistor);
W
WangXi 已提交
339 340 341 342
}

void CheckVarHasNanOrInf(const std::string& op_type,
                         const std::string& var_name,
343
                         const framework::Variable* var,
W
WangXi 已提交
344 345
                         const platform::Place& place) {
  PADDLE_ENFORCE_NOT_NULL(
346 347 348
      var,
      platform::errors::NotFound(
          "Cannot find var: `%s` in op `%s`.", var_name, op_type));
W
WangXi 已提交
349 350 351 352

  const Tensor* tensor{nullptr};
  if (var->IsType<framework::LoDTensor>()) {
    tensor = &var->Get<framework::LoDTensor>();
353 354
  } else if (var->IsType<phi::SelectedRows>()) {
    tensor = &var->Get<phi::SelectedRows>().value();
W
WangXi 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368
  } else {
    VLOG(10) << var_name << " var_name need not to check";
    return;
  }

  if (tensor->memory_size() == 0) {
    VLOG(10) << var_name << " var_name need not to check, size == 0";
    return;
  }

  VLOG(10) << "begin check " << op_type << " var_name:" << var_name
           << ", place:" << tensor->place() << ", numel:" << tensor->numel();

  if (platform::is_gpu_place(tensor->place())) {
369
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
370 371
    tensor_check<platform::CUDADeviceContext>(
        op_type, var_name, *tensor, place);
W
WangXi 已提交
372 373 374 375
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Tensor[%s] use gpu place. PaddlePaddle must compile with GPU.",
        var_name));
376 377 378 379
#endif
    return;
  } else if (platform::is_xpu_place(tensor->place())) {
#ifdef PADDLE_WITH_XPU
380 381
    if (framework::TransToProtoVarType(tensor->dtype()) !=
        proto::VarType::FP32) {
382 383 384 385
      return;
    }

    float* cpu_data = new float[tensor->numel()];
386 387
    memory::Copy(platform::CPUPlace(),
                 static_cast<void*>(cpu_data),
388
                 tensor->place(),
T
taixiurong 已提交
389 390
                 static_cast<const void*>(tensor->data<float>()),
                 tensor->numel() * sizeof(float));
391 392 393 394 395 396 397 398 399
    bool flag = false;
    for (int i = 0; i < tensor->numel(); i++) {
      if (isnan(cpu_data[i]) || isinf(cpu_data[i])) {
        flag = true;
        break;
      }
    }
    delete[] cpu_data;
    PADDLE_ENFORCE_NE(
400 401 402 403
        flag,
        true,
        platform::errors::Fatal(
            "Operator %s output Tensor %s contains Inf.", op_type, var_name));
404 405 406 407
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Tensor[%s] use xpu place. PaddlePaddle must compile with XPU.",
        var_name));
W
WangXi 已提交
408 409
#endif
    return;
410 411
  } else if (platform::is_npu_place(tensor->place())) {
#ifdef PADDLE_WITH_ASCEND_CL
412 413
    if (framework::TransToProtoVarType(tensor->dtype()) !=
        proto::VarType::FP32) {
414 415 416 417 418 419
      return;
    }

    framework::LoDTensor cpu_tensor;
    cpu_tensor.Resize(tensor->dims());
    float* cpu_data = static_cast<float*>(
420
        cpu_tensor.mutable_data(platform::CPUPlace(), tensor->dtype()));
W
WangXi 已提交
421

422 423 424 425 426 427 428 429 430
    framework::TensorCopySync(*tensor, platform::CPUPlace(), &cpu_tensor);
    bool flag = false;
    for (int i = 0; i < cpu_tensor.numel(); i++) {
      if (isnan(cpu_data[i]) || isinf(cpu_data[i])) {
        flag = true;
        break;
      }
    }
    PADDLE_ENFORCE_NE(
431 432 433 434
        flag,
        true,
        platform::errors::Fatal(
            "Operator %s output Tensor %s contains Inf.", op_type, var_name));
435 436 437 438 439 440 441
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Tensor[%s] use npu place. PaddlePaddle must compile with NPU.",
        var_name));
#endif
    return;
  }
W
WangXi 已提交
442 443 444
  tensor_check<platform::CPUDeviceContext>(op_type, var_name, *tensor, place);
}

445
void CheckVarHasNanOrInf(const std::string& op_type,
446
                         const framework::ScopeBase& scope,
447 448 449 450 451 452
                         const std::string& var_name,
                         const platform::Place& place) {
  auto* var = scope.FindVar(var_name);
  CheckVarHasNanOrInf(op_type, var_name, var, place);
}

W
WangXi 已提交
453 454 455
bool IsSkipOp(const framework::OperatorBase& op) {
  if (op_type_nan_inf_white_list().count(op.Type()) != 0) return true;

456 457 458 459 460
  int op_role = 0;
  if (op.HasAttr(framework::OpProtoAndCheckerMaker::OpRoleAttrName())) {
    op_role = op.template Attr<int>(
        framework::OpProtoAndCheckerMaker::OpRoleAttrName());
  }
W
WangXi 已提交
461 462 463 464 465 466 467 468 469 470

  // kForward=0, can't filter
  if (op_role == static_cast<int>(framework::OpRole::kForward)) {
    op_role = FORWARD;
  }
  if (op_role_nan_inf_white_list & op_role) return true;

  return false;
}

471 472 473 474 475 476 477 478 479 480 481
#ifdef PADDLE_WITH_ASCEND_CL
using NpuOpRunner = paddle::operators::NpuOpRunner;

constexpr int FLOAT_STATUS_SIZE = 8;

static framework::Tensor& npu_float_status() {
  static framework::Tensor float_status;
  return float_status;
}

void NPUAllocAndClearFloatStatus(const framework::OperatorBase& op,
482
                                 const framework::ScopeBase& scope,
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
                                 const platform::Place& place) {
  if (!platform::is_npu_place(place)) return;

  std::call_once(white_list_init_flag, InitWhiteListFormEnv);
  if (IsSkipOp(op)) return;

  auto* dev_ctx = reinterpret_cast<platform::NPUDeviceContext*>(
      platform::DeviceContextPool::Instance().Get(place));
  auto stream = dev_ctx->stream();

  auto& flag = npu_float_status();
  flag.mutable_data<float>({FLOAT_STATUS_SIZE}, place);
  NpuOpRunner("NPUAllocFloatStatus", {}, {flag}).Run(stream);

  framework::Tensor tmp;
  tmp.mutable_data<float>({FLOAT_STATUS_SIZE}, place);
  NpuOpRunner("NPUClearFloatStatus", {tmp}, {flag}).Run(stream);
}

502 503
void PrintNpuVarInfo(const std::string& op_type,
                     const std::string& var_name,
504 505 506 507 508
                     const framework::Variable* var,
                     const platform::Place& place) {
  const Tensor* tensor{nullptr};
  if (var->IsType<framework::LoDTensor>()) {
    tensor = &var->Get<framework::LoDTensor>();
509 510
  } else if (var->IsType<phi::SelectedRows>()) {
    tensor = &var->Get<phi::SelectedRows>().value();
511 512 513 514 515
  } else {
    VLOG(10) << var_name << " var_name need not to check";
    return;
  }

516 517 518 519
  if ((framework::TransToProtoVarType(tensor->dtype()) !=
       proto::VarType::FP32) &&
      (framework::TransToProtoVarType(tensor->dtype()) !=
       proto::VarType::FP16)) {
520 521 522 523 524 525 526 527 528 529 530 531 532
    return;
  }

  if (tensor->memory_size() == 0) {
    VLOG(10) << var_name << " var_name need not to check, size == 0";
    return;
  }

  VLOG(10) << "begin check " << op_type << " var_name:" << var_name
           << ", place:" << tensor->place() << ", numel:" << tensor->numel();

  framework::Tensor cpu_tensor;
  cpu_tensor.Resize(tensor->dims());
533
  cpu_tensor.mutable_data(platform::CPUPlace(), tensor->dtype());
534 535 536 537 538
  framework::TensorCopySync(*tensor, platform::CPUPlace(), &cpu_tensor);

  LOG(WARNING) << "print [" << var_name << "] tensor info:";
  // use env strategy control in future, -1=print_all.
  int print_num = 3;
539
  if (framework::TransToProtoVarType(tensor->dtype()) == proto::VarType::FP32) {
540 541
    const float* value = cpu_tensor.data<float>();
    PrintNanInf(value, tensor->numel(), print_num, op_type, var_name, false);
542 543
  } else if (framework::TransToProtoVarType(tensor->dtype()) ==
             proto::VarType::FP16) {
544 545 546 547 548 549 550
    const paddle::platform::float16* value =
        cpu_tensor.data<paddle::platform::float16>();
    PrintNanInf(value, tensor->numel(), print_num, op_type, var_name, false);
  }
}

void PrintNPUOpValueInfo(const framework::OperatorBase& op,
551
                         const framework::ScopeBase& scope,
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
                         const platform::Place& place) {
  LOG(WARNING) << "There are `nan` or `inf` in operator (" << op.Type()
               << "), here we print some tensor value info of this op.";
  for (auto& vname : op.InputVars()) {
    auto* var = scope.FindVar(vname);
    if (var == nullptr) continue;
    PrintNpuVarInfo(op.Type(), vname, var, place);
  }

  for (auto& vname : op.OutputVars(true)) {
    auto* var = scope.FindVar(vname);
    if (var == nullptr) continue;
    PrintNpuVarInfo(op.Type(), vname, var, place);
  }
}

static void NPUCheckOpHasNanOrInf(const framework::OperatorBase& op,
569
                                  const framework::ScopeBase& scope,
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
                                  const platform::Place& place) {
  if (!platform::is_npu_place(place)) return;

  auto* dev_ctx = reinterpret_cast<platform::NPUDeviceContext*>(
      platform::DeviceContextPool::Instance().Get(place));
  auto stream = dev_ctx->stream();

  auto& flag = npu_float_status();
  Tensor tmp;
  tmp.mutable_data<float>({FLOAT_STATUS_SIZE}, place);
  // NPUGetFloatStatus updates data on input in-place.
  // tmp is only placeholder.
  NpuOpRunner("NPUGetFloatStatus", {flag}, {tmp}).Run(stream);

  framework::Tensor cpu_tensor;
  auto cpu_place = platform::CPUPlace();
  float* cpu_data = static_cast<float*>(
      cpu_tensor.mutable_data<float>({FLOAT_STATUS_SIZE}, cpu_place));

  framework::TensorCopySync(flag, cpu_place, &cpu_tensor);
  float sum = 0.0;
  for (int i = 0; i < FLOAT_STATUS_SIZE; ++i) {
    sum += cpu_data[i];
  }

  if (sum >= 1.0) PrintNPUOpValueInfo(op, scope, place);

597 598
  PADDLE_ENFORCE_LT(sum,
                    1.0,
599 600
                    platform::errors::PreconditionNotMet(
                        "Operator %s contains Nan/Inf.", op.Type()));
601 602 603
}
#endif

W
WangXi 已提交
604
void CheckOpHasNanOrInf(const framework::OperatorBase& op,
605
                        const framework::ScopeBase& exec_scope,
W
WangXi 已提交
606 607 608 609 610
                        const platform::Place& place) {
  std::call_once(white_list_init_flag, InitWhiteListFormEnv);

  if (IsSkipOp(op)) return;

611 612 613 614 615 616 617
#ifdef PADDLE_WITH_ASCEND_CL
  if (platform::is_npu_place(place)) {
    NPUCheckOpHasNanOrInf(op, exec_scope, place);
    return;
  }
#endif

W
WangXi 已提交
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
  if (op_var_nan_inf_white_list().count(op.Type()) == 0) {
    // NOTE. vname may destruct in the end of this func.
    for (auto& vname : op.OutputVars(true)) {
      auto* var = exec_scope.FindVar(vname);
      if (var == nullptr) continue;
      CheckVarHasNanOrInf(op.Type(), exec_scope, vname, place);
    }
  } else {
    for (auto& vname : op.OutputVars(true)) {
      bool need_check = true;
      for (auto& white_vname : op_var_nan_inf_white_list().at(op.Type())) {
        if (vname.find(white_vname) != std::string::npos) {
          need_check = false;
          break;
        }
      }
      if (!need_check) continue;
      auto* var = exec_scope.FindVar(vname);
      if (var == nullptr) continue;
      CheckVarHasNanOrInf(op.Type(), exec_scope, vname, place);
    }
  }
}

}  // namespace details
}  // namespace framework
}  // namespace paddle