elementwise_max_op.h 2.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
F
wip  
fengjiayi 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include "paddle/fluid/operators/elementwise/elementwise_functor.h"
W
Wu Yi 已提交
18 19
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
F
wip  
fengjiayi 已提交
20 21 22 23 24 25 26 27

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class ElementwiseMaxKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
28 29 30
    auto* x = ctx.Input<framework::LoDTensor>("X");
    auto* y = ctx.Input<framework::LoDTensor>("Y");
    auto* z = ctx.Output<framework::LoDTensor>("Out");
C
chengduoZH 已提交
31 32 33

    z->mutable_data<T>(ctx.GetPlace());
    int axis = ctx.Attr<int>("axis");
C
chengduoZH 已提交
34 35
    ElementwiseComputeEx<MaxFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          MaxFunctor<T>(), z);
F
wip  
fengjiayi 已提交
36 37 38 39
  }
};

template <typename T>
C
chengduoZH 已提交
40 41
struct MaxGradDx {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
G
Guoxia Wang 已提交
42
    return dout * static_cast<T>(x > y);
F
wip  
fengjiayi 已提交
43 44 45 46
  }
};

template <typename T>
C
chengduoZH 已提交
47 48
struct MaxGradDy {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
G
Guoxia Wang 已提交
49
    return dout * static_cast<T>(x <= y);
F
wip  
fengjiayi 已提交
50 51 52
  }
};

F
fengjiayi 已提交
53
template <typename DeviceContext, typename T>
54
class ElementwiseMaxGradKernel : public ElemwiseGradKernel<T> {
F
fengjiayi 已提交
55 56
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
57
    ElemwiseGradKernel<T>::Compute(ctx);
C
chengduoZH 已提交
58 59 60 61 62 63 64
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
65
    auto* out = dout;  // Fake out, not used
C
chengduoZH 已提交
66
    int axis = ctx.Attr<int>("axis");
C
chengduoZH 已提交
67 68
    ElemwiseGradCompute<DeviceContext, T, MaxGradDx<T>, MaxGradDy<T>>(
        ctx, *x, *y, *out, *dout, axis, dx, dy, MaxGradDx<T>(), MaxGradDy<T>());
F
fengjiayi 已提交
69 70
  }
};
F
wip  
fengjiayi 已提交
71 72
}  // namespace operators
}  // namespace paddle