blas_impl.cu.h 67.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

17
#include "gflags/gflags.h"
18
#include "paddle/phi/backends/dynload/cublas.h"
19
#include "paddle/phi/backends/gpu/gpu_context.h"
20
#include "paddle/phi/kernels/funcs/math_function.h"
21 22

DECLARE_bool(enable_cublas_tensor_op_math);
23
DECLARE_bool(gemm_use_half_precision_compute_type);
24

25
namespace phi {
26 27 28 29 30 31 32 33 34
namespace funcs {

template <typename T>
struct CUBlas;

template <>
struct CUBlas<float> {
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
35
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasSgemm(args...));
36 37 38 39
  }

  template <typename... ARGS>
  static void AXPY(ARGS... args) {
40
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasSaxpy(args...));
41 42 43 44
  }

  template <typename... ARGS>
  static void SCAL(ARGS... args) {
45
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasSscal(args...));
46 47 48 49
  }

  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
50
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasScopy(args...));
51 52 53 54
  }

  template <typename... ARGS>
  static void GEMV(ARGS... args) {
55
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasSgemv(args...));
56 57 58 59 60 61
  }

  template <typename... ARGS>
  static void GEMM_STRIDED_BATCH(ARGS... args) {
#if CUDA_VERSION >= 8000
    PADDLE_ENFORCE_GPU_SUCCESS(
62
        phi::dynload::cublasSgemmStridedBatched(args...));
63
#else
64
    PADDLE_THROW(phi::errors::Unimplemented(
65 66 67 68 69 70 71
        "SgemmStridedBatched is not supported on cuda <= 7.5"));
#endif
  }

  // NOTES: GEMM_EX can use Tensor Core to accelerate matrix multiply.
  // https://docs.nvidia.com/cuda/cublas/index.html#cublassetmathmode
  template <typename... ARGS>
72
  static void GEMM_EX(phi::GPUContext *dev_ctx,
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
                      cublasOperation_t transa,
                      cublasOperation_t transb,
                      int m,
                      int n,
                      int k,
                      const float *alpha,
                      const void *A,
                      cudaDataType_t Atype,
                      int lda,
                      const void *B,
                      cudaDataType_t Btype,
                      int ldb,
                      const float *beta,
                      void *C,
                      cudaDataType_t Ctype,
                      int ldc) {
// Because the gcc 4.8 doesn't expand template parameter pack that
// appears in a lambda-expression, I can not use template parameter pack
// here.
#if CUDA_VERSION >= 8000
    VLOG(5) << "use_tensor_op_math: "
            << (dev_ctx->tensor_core_available() ? "True" : "False");
    dev_ctx->TensorCoreCublasCallIfAvailable([&](cublasHandle_t handle) {
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
      PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasSgemmEx(handle,
                                                             transa,
                                                             transb,
                                                             m,
                                                             n,
                                                             k,
                                                             alpha,
                                                             A,
                                                             Atype,
                                                             lda,
                                                             B,
                                                             Btype,
                                                             ldb,
                                                             beta,
                                                             C,
                                                             Ctype,
                                                             ldc));
113 114
    });
#else
115
    PADDLE_THROW(phi::errors::Unimplemented(
116 117 118 119 120 121
        "cublasSgemmEx is not supported on cuda <= 7.5"));
#endif
  }

  template <typename... ARGS>
  static void TRSM(ARGS... args) {
122
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasStrsm(args...));
123 124 125 126
  }

  template <typename... ARGS>
  static void GETRF_BATCH(ARGS... args) {
127
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasSgetrfBatched(args...));
128 129 130 131
  }

  template <typename... ARGS>
  static void GETRI_BATCH(ARGS... args) {
132
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasSgetriBatched(args...));
133 134 135 136
  }

  template <typename... ARGS>
  static void MATINV_BATCH(ARGS... args) {
137
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasSmatinvBatched(args...));
138 139 140 141
  }

  template <typename... ARGS>
  static void GETRS_BATCH(ARGS... args) {
142
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasSgetrsBatched(args...));
143 144 145 146
  }

  template <typename... ARGS>
  static void TRSM_BATCH(ARGS... args) {
147
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasStrsmBatched(args...));
148 149 150 151 152 153 154
  }
};

template <>
struct CUBlas<double> {
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
155
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasDgemm(args...));
156 157 158 159
  }

  template <typename... ARGS>
  static void AXPY(ARGS... args) {
160
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasDaxpy(args...));
161 162 163 164
  }

  template <typename... ARGS>
  static void SCAL(ARGS... args) {
165
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasDscal(args...));
166 167 168 169
  }

  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
170
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasDcopy(args...));
171 172 173 174
  }

  template <typename... ARGS>
  static void GEMV(ARGS... args) {
175
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasDgemv(args...));
176 177 178 179 180 181
  }

  template <typename... ARGS>
  static void GEMM_STRIDED_BATCH(ARGS... args) {
#if CUDA_VERSION >= 8000
    PADDLE_ENFORCE_GPU_SUCCESS(
182
        phi::dynload::cublasDgemmStridedBatched(args...));
183
#else
184
    PADDLE_THROW(phi::errors::Unimplemented(
185 186 187 188 189 190 191
        "DgemmStridedBatched is not supported on cuda <= 7.5"));
#endif
  }

  template <typename... ARGS>
  static void GEMM_EX(ARGS... args) {
    PADDLE_THROW(
192
        phi::errors::Unimplemented("Currently there are not cublasDgemmEx."));
193 194 195 196
  }

  template <typename... ARGS>
  static void TRSM(ARGS... args) {
197
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasDtrsm(args...));
198 199 200 201
  }

  template <typename... ARGS>
  static void GETRF_BATCH(ARGS... args) {
202
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasDgetrfBatched(args...));
203 204 205 206
  }

  template <typename... ARGS>
  static void GETRI_BATCH(ARGS... args) {
207
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasDgetriBatched(args...));
208 209 210 211
  }

  template <typename... ARGS>
  static void MATINV_BATCH(ARGS... args) {
212
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasDmatinvBatched(args...));
213 214 215 216
  }

  template <typename... ARGS>
  static void GETRS_BATCH(ARGS... args) {
217
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasDgetrsBatched(args...));
218 219 220 221
  }

  template <typename... ARGS>
  static void TRSM_BATCH(ARGS... args) {
222
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasDtrsmBatched(args...));
223 224 225 226
  }
};

template <>
227 228
struct CUBlas<phi::dtype::float16> {
  using float16 = phi::dtype::float16;
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243

  static void GEMM(cublasHandle_t handle,
                   cublasOperation_t transa,
                   cublasOperation_t transb,
                   int m,
                   int n,
                   int k,
                   const float16 *alpha,
                   const float16 *A,
                   int lda,
                   const float16 *B,
                   int ldb,
                   const float16 *beta,
                   float16 *C,
                   int ldc) {
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
    PADDLE_ENFORCE_GPU_SUCCESS(
        phi::dynload::cublasHgemm(handle,
                                  transa,
                                  transb,
                                  m,
                                  n,
                                  k,
                                  reinterpret_cast<const __half *>(alpha),
                                  reinterpret_cast<const __half *>(A),
                                  lda,
                                  reinterpret_cast<const __half *>(B),
                                  ldb,
                                  reinterpret_cast<const __half *>(beta),
                                  reinterpret_cast<__half *>(C),
                                  ldc));
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
  }

  static void GEMM_STRIDED_BATCH(cublasHandle_t handle,
                                 cublasOperation_t transa,
                                 cublasOperation_t transb,
                                 int m,
                                 int n,
                                 int k,
                                 const float16 *alpha,
                                 const float16 *A,
                                 int lda,
                                 long long int strideA,  // NOLINT
                                 const float16 *B,       // NOLINT
                                 int ldb,
                                 long long int strideB,  // NOLINT
                                 const float16 *beta,
                                 float16 *C,
                                 int ldc,
                                 long long int strideC,  // NOLINT
                                 int batchCount) {
#if CUDA_VERSION >= 8000
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasHgemmStridedBatched(
        handle,
        transa,
        transb,
        m,
        n,
        k,
        reinterpret_cast<const __half *>(alpha),
        reinterpret_cast<const __half *>(A),
        lda,
        strideA,
        reinterpret_cast<const __half *>(B),
        ldb,
        strideB,
        reinterpret_cast<const __half *>(beta),
        reinterpret_cast<__half *>(C),
        ldc,
        strideC,
        batchCount));
299
#else
300
    PADDLE_THROW(phi::errors::Unimplemented(
301 302 303 304 305 306 307
        "HgemmStridedBatched is not supported on cuda <= 7.5"));
#endif
  }

  // NOTES: GEMM_EX can use Tensor Core to accelerate matrix multiply.
  // https://docs.nvidia.com/cuda/cublas/index.html#cublassetmathmode
  template <typename... ARGS>
308
  static void GEMM_EX(phi::GPUContext *dev_ctx,
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
                      cublasOperation_t transa,
                      cublasOperation_t transb,
                      int m,
                      int n,
                      int k,
                      const void *alpha,
                      const void *A,
                      cudaDataType_t Atype,
                      int lda,
                      const void *B,
                      cudaDataType_t Btype,
                      int ldb,
                      const void *beta,
                      void *C,
                      cudaDataType_t Ctype,
                      int ldc,
                      cudaDataType_t computeType) {
#if CUDA_VERSION >= 8000
    cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT;
#if CUDA_VERSION >= 9000
    bool use_tensor_op_math = dev_ctx->tensor_core_available();
    if (use_tensor_op_math) {
      algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
    }
    VLOG(5) << "use_tensor_op_math: "
            << (use_tensor_op_math ? "True" : "False");
#endif  // CUDA_VERSION >= 9000

    dev_ctx->TensorCoreCublasCallIfAvailable([&](cublasHandle_t handle) {
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
      PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasGemmEx(handle,
                                                            transa,
                                                            transb,
                                                            m,
                                                            n,
                                                            k,
                                                            alpha,
                                                            A,
                                                            Atype,
                                                            lda,
                                                            B,
                                                            Btype,
                                                            ldb,
                                                            beta,
                                                            C,
                                                            Ctype,
                                                            ldc,
                                                            computeType,
                                                            algo));
357 358
    });
#else
359
    PADDLE_THROW(phi::errors::Unimplemented(
360 361 362 363 364 365
        "cublasGemmEx is not supported on cuda <= 7.5"));
#endif
  }
};

template <>
366
struct CUBlas<phi::dtype::complex<float>> {
367 368 369 370
  static void GEMV(cublasHandle_t handle,
                   cublasOperation_t transa,
                   int m,
                   int n,
371 372
                   const phi::dtype::complex<float> *alpha,
                   const phi::dtype::complex<float> *A,
373
                   int lda,
374
                   const phi::dtype::complex<float> *B,
375
                   int ldb,
376 377
                   const phi::dtype::complex<float> *beta,
                   phi::dtype::complex<float> *C,
378
                   int ldc) {
379
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasCgemv(
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
        handle,
        transa,
        m,
        n,
        reinterpret_cast<const cuFloatComplex *>(alpha),
        reinterpret_cast<const cuFloatComplex *>(A),
        lda,
        reinterpret_cast<const cuFloatComplex *>(B),
        ldb,
        reinterpret_cast<const cuFloatComplex *>(beta),
        reinterpret_cast<cuFloatComplex *>(C),
        ldc));
  }

  static void AXPY(cublasHandle_t handle,
                   int n,
396 397
                   const phi::dtype::complex<float> *alpha,
                   const phi::dtype::complex<float> *X,
398
                   const int incX,
399
                   phi::dtype::complex<float> *Y,
400
                   const int incY) {
401
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasCaxpy(
402 403 404 405 406 407 408 409 410
        handle,
        n,
        reinterpret_cast<const cuFloatComplex *>(alpha),
        reinterpret_cast<const cuFloatComplex *>(X),
        incX,
        reinterpret_cast<cuFloatComplex *>(Y),
        incY));
  }

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
  static void GEMM_STRIDED_BATCH(cublasHandle_t handle,
                                 cublasOperation_t transa,
                                 cublasOperation_t transb,
                                 int m,
                                 int n,
                                 int k,
                                 const phi::dtype::complex<float> *alpha,
                                 const phi::dtype::complex<float> *A,
                                 int lda,
                                 long long int strideA,                // NOLINT
                                 const phi::dtype::complex<float> *B,  // NOLINT
                                 int ldb,
                                 long long int strideB,  // NOLINT
                                 const phi::dtype::complex<float> *beta,
                                 phi::dtype::complex<float> *C,
                                 int ldc,
                                 long long int strideC,  // NOLINT
                                 int batchCount) {
429
#if CUDA_VERSION >= 8000
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasCgemmStridedBatched(
        handle,
        transa,
        transb,
        m,
        n,
        k,
        reinterpret_cast<const cuFloatComplex *>(alpha),
        reinterpret_cast<const cuFloatComplex *>(A),
        lda,
        strideA,
        reinterpret_cast<const cuFloatComplex *>(B),
        ldb,
        strideB,
        reinterpret_cast<const cuFloatComplex *>(beta),
        reinterpret_cast<cuFloatComplex *>(C),
        ldc,
        strideC,
        batchCount));
449
#else
450
    PADDLE_THROW(phi::errors::Unimplemented(
451 452 453 454 455 456 457 458 459 460
        "CgemmStridedBatched is not supported on cuda <= 7.5"));
#endif
  }

  static void GEMM(cublasHandle_t handle,
                   cublasOperation_t transa,
                   cublasOperation_t transb,
                   int m,
                   int n,
                   int k,
461 462
                   const phi::dtype::complex<float> *alpha,
                   const phi::dtype::complex<float> *A,
463
                   int lda,
464
                   const phi::dtype::complex<float> *B,
465
                   int ldb,
466 467
                   const phi::dtype::complex<float> *beta,
                   phi::dtype::complex<float> *C,
468
                   int ldc) {
469
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasCgemm(
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
        handle,
        transa,
        transb,
        m,
        n,
        k,
        reinterpret_cast<const cuFloatComplex *>(alpha),
        reinterpret_cast<const cuFloatComplex *>(A),
        lda,
        reinterpret_cast<const cuFloatComplex *>(B),
        ldb,
        reinterpret_cast<const cuFloatComplex *>(beta),
        reinterpret_cast<cuFloatComplex *>(C),
        ldc));
  }

  static void TRSM(cublasHandle_t handle,
                   cublasSideMode_t side,
                   cublasFillMode_t uplo,
                   cublasOperation_t transa,
                   cublasDiagType_t diag,
                   int m,
                   int n,
493 494
                   const phi::dtype::complex<float> *alpha,
                   const phi::dtype::complex<float> *A,
495
                   int lda,
496
                   phi::dtype::complex<float> *B,
497
                   int ldb) {
498
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasCtrsm(
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
        handle,
        side,
        uplo,
        transa,
        diag,
        m,
        n,
        reinterpret_cast<const cuFloatComplex *>(alpha),
        reinterpret_cast<const cuFloatComplex *>(A),
        lda,
        reinterpret_cast<cuFloatComplex *>(B),
        ldb));
  }

  // NOTES: GEMM_EX can use Tensor Core to accelerate matrix multiply.
  // https://docs.nvidia.com/cuda/cublas/index.html#cublassetmathmode
  template <typename... ARGS>
516
  static void GEMM_EX(phi::GPUContext *dev_ctx,
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
                      cublasOperation_t transa,
                      cublasOperation_t transb,
                      int m,
                      int n,
                      int k,
                      const void *alpha,
                      const void *A,
                      cudaDataType_t Atype,
                      int lda,
                      const void *B,
                      cudaDataType_t Btype,
                      int ldb,
                      const void *beta,
                      void *C,
                      cudaDataType_t Ctype,
                      int ldc,
                      cudaDataType_t computeType) {
#if CUDA_VERSION >= 8000
    cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT;
#if CUDA_VERSION >= 9000
    bool use_tensor_op_math = dev_ctx->tensor_core_available();
    if (use_tensor_op_math) {
      algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
    }
    VLOG(5) << "use_tensor_op_math: "
            << (use_tensor_op_math ? "True" : "False");
#endif  // CUDA_VERSION >= 9000

    dev_ctx->TensorCoreCublasCallIfAvailable([&](cublasHandle_t handle) {
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
      PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasGemmEx(handle,
                                                            transa,
                                                            transb,
                                                            m,
                                                            n,
                                                            k,
                                                            alpha,
                                                            A,
                                                            Atype,
                                                            lda,
                                                            B,
                                                            Btype,
                                                            ldb,
                                                            beta,
                                                            C,
                                                            Ctype,
                                                            ldc,
                                                            computeType,
                                                            algo));
565 566
    });
#else
567
    PADDLE_THROW(phi::errors::Unimplemented(
568 569 570 571 572 573 574 575 576 577 578
        "cublasGemmEx is not supported on cuda <= 7.5"));
#endif
  }

  static void TRSM_BATCH(cublasHandle_t handle,
                         cublasSideMode_t side,
                         cublasFillMode_t uplo,
                         cublasOperation_t transa,
                         cublasDiagType_t diag,
                         int m,
                         int n,
579 580
                         const phi::dtype::complex<float> *alpha,
                         const phi::dtype::complex<float> **A,
581
                         int lda,
582
                         phi::dtype::complex<float> **B,
583 584
                         int ldb,
                         int batch_size) {
585
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasCtrsmBatched(
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
        handle,
        side,
        uplo,
        transa,
        diag,
        m,
        n,
        reinterpret_cast<const cuFloatComplex *>(alpha),
        reinterpret_cast<const cuFloatComplex **>(A),
        lda,
        reinterpret_cast<cuFloatComplex **>(B),
        ldb,
        batch_size));
  }
};

template <>
603
struct CUBlas<phi::dtype::complex<double>> {
604 605 606 607
  static void GEMV(cublasHandle_t handle,
                   cublasOperation_t transa,
                   int m,
                   int n,
608 609
                   const phi::dtype::complex<double> *alpha,
                   const phi::dtype::complex<double> *A,
610
                   int lda,
611
                   const phi::dtype::complex<double> *B,
612
                   int ldb,
613 614
                   const phi::dtype::complex<double> *beta,
                   phi::dtype::complex<double> *C,
615
                   int ldc) {
616
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasZgemv(
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
        handle,
        transa,
        m,
        n,
        reinterpret_cast<const cuDoubleComplex *>(alpha),
        reinterpret_cast<const cuDoubleComplex *>(A),
        lda,
        reinterpret_cast<const cuDoubleComplex *>(B),
        ldb,
        reinterpret_cast<const cuDoubleComplex *>(beta),
        reinterpret_cast<cuDoubleComplex *>(C),
        ldc));
  }

  static void AXPY(cublasHandle_t handle,
                   int n,
633 634
                   const phi::dtype::complex<double> *alpha,
                   const phi::dtype::complex<double> *X,
635
                   const int incX,
636
                   phi::dtype::complex<double> *Y,
637
                   const int incY) {
638
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasZaxpy(
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
        handle,
        n,
        reinterpret_cast<const cuDoubleComplex *>(alpha),
        reinterpret_cast<const cuDoubleComplex *>(X),
        incX,
        reinterpret_cast<cuDoubleComplex *>(Y),
        incY));
  }

  static void GEMM_STRIDED_BATCH(
      cublasHandle_t handle,
      cublasOperation_t transa,
      cublasOperation_t transb,
      int m,
      int n,
      int k,
655 656
      const phi::dtype::complex<double> *alpha,
      const phi::dtype::complex<double> *A,
657
      int lda,
658 659
      long long int strideA,                 // NOLINT
      const phi::dtype::complex<double> *B,  // NOLINT
660 661
      int ldb,
      long long int strideB,  // NOLINT
662 663
      const phi::dtype::complex<double> *beta,
      phi::dtype::complex<double> *C,
664 665 666 667
      int ldc,
      long long int strideC,  // NOLINT
      int batchCount) {
#if CUDA_VERSION >= 8000
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasZgemmStridedBatched(
        handle,
        transa,
        transb,
        m,
        n,
        k,
        reinterpret_cast<const cuDoubleComplex *>(alpha),
        reinterpret_cast<const cuDoubleComplex *>(A),
        lda,
        strideA,
        reinterpret_cast<const cuDoubleComplex *>(B),
        ldb,
        strideB,
        reinterpret_cast<const cuDoubleComplex *>(beta),
        reinterpret_cast<cuDoubleComplex *>(C),
        ldc,
        strideC,
        batchCount));
687
#else
688
    PADDLE_THROW(phi::errors::Unimplemented(
689 690 691 692 693 694 695 696 697 698
        "CgemmStridedBatched is not supported on cuda <= 7.5"));
#endif
  }

  static void GEMM(cublasHandle_t handle,
                   cublasOperation_t transa,
                   cublasOperation_t transb,
                   int m,
                   int n,
                   int k,
699 700
                   const phi::dtype::complex<double> *alpha,
                   const phi::dtype::complex<double> *A,
701
                   int lda,
702
                   const phi::dtype::complex<double> *B,
703
                   int ldb,
704 705
                   const phi::dtype::complex<double> *beta,
                   phi::dtype::complex<double> *C,
706
                   int ldc) {
707
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasZgemm(
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
        handle,
        transa,
        transb,
        m,
        n,
        k,
        reinterpret_cast<const cuDoubleComplex *>(alpha),
        reinterpret_cast<const cuDoubleComplex *>(A),
        lda,
        reinterpret_cast<const cuDoubleComplex *>(B),
        ldb,
        reinterpret_cast<const cuDoubleComplex *>(beta),
        reinterpret_cast<cuDoubleComplex *>(C),
        ldc));
  }

  static void TRSM(cublasHandle_t handle,
                   cublasSideMode_t side,
                   cublasFillMode_t uplo,
                   cublasOperation_t transa,
                   cublasDiagType_t diag,
                   int m,
                   int n,
731 732
                   const phi::dtype::complex<double> *alpha,
                   const phi::dtype::complex<double> *A,
733
                   int lda,
734
                   phi::dtype::complex<double> *B,
735
                   int ldb) {
736
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasZtrsm(
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
        handle,
        side,
        uplo,
        transa,
        diag,
        m,
        n,
        reinterpret_cast<const cuDoubleComplex *>(alpha),
        reinterpret_cast<const cuDoubleComplex *>(A),
        lda,
        reinterpret_cast<cuDoubleComplex *>(B),
        ldb));
  }

  static void TRSM_BATCH(cublasHandle_t handle,
                         cublasSideMode_t side,
                         cublasFillMode_t uplo,
                         cublasOperation_t transa,
                         cublasDiagType_t diag,
                         int m,
                         int n,
758 759
                         const phi::dtype::complex<double> *alpha,
                         const phi::dtype::complex<double> **A,
760
                         int lda,
761
                         phi::dtype::complex<double> **B,
762 763
                         int ldb,
                         int batch_size) {
764
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasZtrsmBatched(
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
        handle,
        side,
        uplo,
        transa,
        diag,
        m,
        n,
        reinterpret_cast<const cuDoubleComplex *>(alpha),
        reinterpret_cast<const cuDoubleComplex **>(A),
        lda,
        reinterpret_cast<cuDoubleComplex **>(B),
        ldb,
        batch_size));
  }

  // NOTES: GEMM_EX can use Tensor Core to accelerate matrix multiply.
  // https://docs.nvidia.com/cuda/cublas/index.html#cublassetmathmode
  template <typename... ARGS>
783
  static void GEMM_EX(phi::GPUContext *dev_ctx,
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
                      cublasOperation_t transa,
                      cublasOperation_t transb,
                      int m,
                      int n,
                      int k,
                      const void *alpha,
                      const void *A,
                      cudaDataType_t Atype,
                      int lda,
                      const void *B,
                      cudaDataType_t Btype,
                      int ldb,
                      const void *beta,
                      void *C,
                      cudaDataType_t Ctype,
                      int ldc,
                      cudaDataType_t computeType) {
#if CUDA_VERSION >= 8000
    cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT;
#if CUDA_VERSION >= 9000
    bool use_tensor_op_math = dev_ctx->tensor_core_available();
    if (use_tensor_op_math) {
      algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
    }
    VLOG(5) << "use_tensor_op_math: "
            << (use_tensor_op_math ? "True" : "False");
#endif  // CUDA_VERSION >= 9000

    dev_ctx->TensorCoreCublasCallIfAvailable([&](cublasHandle_t handle) {
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
      PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasGemmEx(handle,
                                                            transa,
                                                            transb,
                                                            m,
                                                            n,
                                                            k,
                                                            alpha,
                                                            A,
                                                            Atype,
                                                            lda,
                                                            B,
                                                            Btype,
                                                            ldb,
                                                            beta,
                                                            C,
                                                            Ctype,
                                                            ldc,
                                                            computeType,
                                                            algo));
832 833
    });
#else
834
    PADDLE_THROW(phi::errors::Unimplemented(
835 836 837 838 839 840 841
        "cublasGemmEx is not supported on cuda <= 7.5"));
#endif
  }
};

template <>
template <typename T>
842 843 844 845 846 847 848 849 850 851
void Blas<phi::GPUContext>::GEMM(CBLAS_TRANSPOSE transA,
                                 CBLAS_TRANSPOSE transB,
                                 int M,
                                 int N,
                                 int K,
                                 T alpha,
                                 const T *A,
                                 const T *B,
                                 T beta,
                                 T *C) const {
852 853 854 855 856 857 858 859 860 861 862
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  cublasOperation_t cuTransA =
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB =
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;

#if CUDA_VERSION >= 8000
  if (FLAGS_enable_cublas_tensor_op_math && std::is_same<T, float>::value) {
863
    auto &cuda_ctx = const_cast<phi::GPUContext &>(context_);
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
    CUBlas<T>::GEMM_EX(&cuda_ctx,
                       cuTransB,
                       cuTransA,
                       N,
                       M,
                       K,
                       &alpha,
                       B,
                       CUDA_R_32F,
                       ldb,
                       A,
                       CUDA_R_32F,
                       lda,
                       &beta,
                       C,
                       CUDA_R_32F,
                       N);
  } else {
#endif  // CUDA_VERSION >= 8000
    context_.CublasCall([&](cublasHandle_t handle) {
      CUBlas<T>::GEMM(handle,
                      cuTransB,
                      cuTransA,
                      N,
                      M,
                      K,
                      &alpha,
                      B,
                      ldb,
                      A,
                      lda,
                      &beta,
                      C,
                      N);
    });

#if CUDA_VERSION >= 8000
  }
#endif  // CUDA_VERSION >= 8000
}

template <>
template <>
907 908 909 910 911 912 913 914 915 916
inline void Blas<phi::GPUContext>::GEMM(CBLAS_TRANSPOSE transA,
                                        CBLAS_TRANSPOSE transB,
                                        int M,
                                        int N,
                                        int K,
                                        phi::dtype::float16 alpha,
                                        const phi::dtype::float16 *A,
                                        const phi::dtype::float16 *B,
                                        phi::dtype::float16 beta,
                                        phi::dtype::float16 *C) const {
917 918 919 920 921 922 923 924 925 926 927 928 929
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  cublasOperation_t cuTransA =
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB =
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;

  // TODO(kexinzhao): add processing code for compute capability < 53 case
  PADDLE_ENFORCE_GE(
      context_.GetComputeCapability(),
      53,
930
      phi::errors::InvalidArgument(
931 932 933 934 935 936 937 938 939 940 941 942
          "cublas fp16 gemm requires GPU compute capability >= 53,"
          "but received %d",
          context_.GetComputeCapability()));

  float h_alpha = static_cast<float>(alpha);
  float h_beta = static_cast<float>(beta);

#if CUDA_VERSION >= 8000
  // cublasHgemm does true FP16 computation which is slow for non-Volta
  // GPUs. So use cublasGemmEx instead which does pesudo FP16 computation:
  // input/output in fp16, computation in fp32, which can also be accelerated
  // using tensor cores in volta GPUs.
943 944
  auto &cuda_ctx = const_cast<phi::GPUContext &>(context_);
  CUBlas<phi::dtype::float16>::GEMM_EX(&cuda_ctx,
945 946 947 948 949 950
                                       cuTransB,
                                       cuTransA,
                                       N,
                                       M,
                                       K,
                                       &h_alpha,
951 952
                                       B,
                                       CUDA_R_16F,
953
                                       ldb,
954 955
                                       A,
                                       CUDA_R_16F,
956 957
                                       lda,
                                       &h_beta,
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
                                       C,
                                       CUDA_R_16F,
                                       N,
                                       CUDA_R_32F);
#else
  // CUDA 7.5 does not support cublasGemmEx, hence we fall back to use hgemm

  context_.CublasCall([&](cublasHandle_t handle) {
    CUBlas<phi::dtype::float16>::GEMM(handle,
                                      cuTransB,
                                      cuTransA,
                                      N,
                                      M,
                                      K,
                                      &h_alpha,
                                      h_B,
                                      ldb,
                                      h_A,
                                      lda,
                                      &h_beta,
                                      h_C,
                                      N);
980 981 982 983 984 985
  });
#endif  // CUDA_VERSION >= 8000
}

template <>
template <>
986 987 988 989 990 991 992 993 994 995
inline void Blas<phi::GPUContext>::GEMM(CBLAS_TRANSPOSE transA,
                                        CBLAS_TRANSPOSE transB,
                                        int M,
                                        int N,
                                        int K,
                                        phi::dtype::bfloat16 alpha,
                                        const phi::dtype::bfloat16 *A,
                                        const phi::dtype::bfloat16 *B,
                                        phi::dtype::bfloat16 beta,
                                        phi::dtype::bfloat16 *C) const {
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
#if CUDA_VERSION >= 11000
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  cublasOperation_t cuTransA =
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB =
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;

  PADDLE_ENFORCE_GE(
      context_.GetComputeCapability(),
      80,
1009
      phi::errors::InvalidArgument(
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
          "cublas bf16 gemm requires GPU compute capability >= 80,"
          "but received %d",
          context_.GetComputeCapability()));

  float h_alpha = static_cast<float>(alpha);
  float h_beta = static_cast<float>(beta);

  cublasGemmAlgo_t algo = CUBLAS_GEMM_DEFAULT;
  bool use_tensor_op_math = context_.tensor_core_available();
  if (use_tensor_op_math) {
    algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
  }
  VLOG(5) << "use_tensor_op_math: " << (use_tensor_op_math ? "True" : "False");

  context_.TensorCoreCublasCallIfAvailable([&](cublasHandle_t handle) {
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cublasGemmEx(handle,
                                                          cuTransB,
                                                          cuTransA,
                                                          N,
                                                          M,
                                                          K,
                                                          &h_alpha,
                                                          B,
                                                          CUDA_R_16BF,
                                                          ldb,
                                                          A,
                                                          CUDA_R_16BF,
                                                          lda,
                                                          &h_beta,
                                                          C,
                                                          CUDA_R_16BF,
                                                          N,
                                                          CUDA_R_32F,
                                                          algo));
1044 1045 1046
  });
#else
  // raise error
1047
  PADDLE_THROW(phi::errors::Unimplemented(
1048 1049 1050 1051 1052 1053 1054
      "cublasGemmEx with bfloat16 is not supported on cuda <= 11"));

#endif  // CUDA_VERSION >= 11000
}

template <>
template <>
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
inline void Blas<phi::GPUContext>::GEMM(CBLAS_TRANSPOSE transA,
                                        CBLAS_TRANSPOSE transB,
                                        int M,
                                        int N,
                                        int K,
                                        phi::dtype::complex<float> alpha,
                                        const phi::dtype::complex<float> *A,
                                        const phi::dtype::complex<float> *B,
                                        phi::dtype::complex<float> beta,
                                        phi::dtype::complex<float> *C) const {
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  cublasOperation_t cuTransA =
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB =
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;

  // TODO(kexinzhao): add processing code for compute capability < 53 case
  PADDLE_ENFORCE_GE(
      context_.GetComputeCapability(),
      53,
1078
      phi::errors::InvalidArgument(
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
          "cublas complex64 gemm requires GPU compute capability >= 53,"
          "but received %d",
          context_.GetComputeCapability()));

  thrust::complex<float> c_alpha =
      thrust::complex<float>(alpha.real, alpha.imag);
  thrust::complex<float> c_beta = thrust::complex<float>(beta.real, beta.imag);

#if CUDA_VERSION >= 8000
  // cublasHgemm does true FP16 computation which is slow for non-Volta
  // GPUs. So use cublasGemmEx instead which does pesudo FP16 computation:
  // input/output in fp16, computation in fp32, which can also be accelerated
  // using tensor cores in volta GPUs.
1092 1093
  auto &cuda_ctx = const_cast<phi::GPUContext &>(context_);
  CUBlas<phi::dtype::complex<float>>::GEMM_EX(&cuda_ctx,
1094 1095 1096 1097 1098 1099
                                              cuTransB,
                                              cuTransA,
                                              N,
                                              M,
                                              K,
                                              &c_alpha,
1100 1101
                                              B,
                                              CUDA_C_32F,
1102
                                              ldb,
1103 1104
                                              A,
                                              CUDA_C_32F,
1105 1106
                                              lda,
                                              &c_beta,
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
                                              C,
                                              CUDA_C_32F,
                                              N,
                                              CUDA_C_32F);
#else
  // CUDA 7.5 does not support cublasGemmEx, hence we fall back to use hgemm

  context_.CublasCall([&](cublasHandle_t handle) {
    CUBlas<phi::dtype::complex<float>>::GEMM(handle,
                                             cuTransB,
                                             cuTransA,
                                             N,
                                             M,
                                             K,
                                             &c_alpha,
                                             h_B,
                                             ldb,
                                             h_A,
                                             lda,
                                             &c_beta,
                                             h_C,
                                             N);
1129 1130 1131 1132 1133 1134
  });
#endif  // CUDA_VERSION >= 8000
}

template <>
template <>
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
inline void Blas<phi::GPUContext>::GEMM(CBLAS_TRANSPOSE transA,
                                        CBLAS_TRANSPOSE transB,
                                        int M,
                                        int N,
                                        int K,
                                        phi::dtype::complex<double> alpha,
                                        const phi::dtype::complex<double> *A,
                                        const phi::dtype::complex<double> *B,
                                        phi::dtype::complex<double> beta,
                                        phi::dtype::complex<double> *C) const {
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  cublasOperation_t cuTransA =
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB =
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;

  // TODO(kexinzhao): add processing code for compute capability < 53 case
  PADDLE_ENFORCE_GE(
      context_.GetComputeCapability(),
      53,
1158
      phi::errors::InvalidArgument(
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
          "cublas complex128 gemm requires GPU compute capability >= 53,"
          "but received %d",
          context_.GetComputeCapability()));

  thrust::complex<double> c_alpha =
      thrust::complex<double>(alpha.real, alpha.imag);
  thrust::complex<double> c_beta =
      thrust::complex<double>(beta.real, beta.imag);

#if CUDA_VERSION >= 8000
  // cublasHgemm does true FP16 computation which is slow for non-Volta
  // GPUs. So use cublasGemmEx instead which does pesudo FP16 computation:
  // input/output in fp16, computation in fp32, which can also be accelerated
  // using tensor cores in volta GPUs.
1173
  auto &cuda_ctx = const_cast<phi::GPUContext &>(context_);
1174
  CUBlas<phi::dtype::complex<double>>::GEMM_EX(&cuda_ctx,
1175 1176 1177 1178 1179 1180
                                               cuTransB,
                                               cuTransA,
                                               N,
                                               M,
                                               K,
                                               &c_alpha,
1181 1182
                                               B,
                                               CUDA_C_64F,
1183
                                               ldb,
1184 1185
                                               A,
                                               CUDA_C_64F,
1186 1187
                                               lda,
                                               &c_beta,
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
                                               C,
                                               CUDA_C_64F,
                                               N,
                                               CUDA_C_64F);
#else
  // CUDA 7.5 does not support cublasGemmEx, hence we fall back to use hgemm

  context_.CublasCall([&](cublasHandle_t handle) {
    CUBlas<phi::dtype::complex<double>>::GEMM(handle,
                                              cuTransB,
                                              cuTransA,
                                              N,
                                              M,
                                              K,
                                              &c_alpha,
                                              h_B,
                                              ldb,
                                              h_A,
                                              lda,
                                              &c_beta,
                                              h_C,
                                              N);
1210 1211 1212 1213 1214 1215
  });
#endif  // CUDA_VERSION >= 8000
}

template <>
template <typename T>
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
void Blas<phi::GPUContext>::GEMM(bool transA,
                                 bool transB,
                                 int M,
                                 int N,
                                 int K,
                                 T alpha,
                                 const T *A,
                                 int lda,
                                 const T *B,
                                 int ldb,
                                 T beta,
                                 T *C,
                                 int ldc) const {
1229 1230 1231 1232 1233 1234 1235
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  cublasOperation_t cuTransA = transA ? CUBLAS_OP_T : CUBLAS_OP_N;
  cublasOperation_t cuTransB = transB ? CUBLAS_OP_T : CUBLAS_OP_N;

#if CUDA_VERSION >= 8000
  if (FLAGS_enable_cublas_tensor_op_math && std::is_same<T, float>::value) {
1236
    auto &cuda_ctx = const_cast<phi::GPUContext &>(context_);
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
    CUBlas<T>::GEMM_EX(&cuda_ctx,
                       cuTransB,
                       cuTransA,
                       N,
                       M,
                       K,
                       &alpha,
                       B,
                       CUDA_R_32F,
                       ldb,
                       A,
                       CUDA_R_32F,
                       lda,
                       &beta,
                       C,
                       CUDA_R_32F,
                       ldc);
  } else {
#endif  // CUDA_VERSION >= 8000

    context_.CublasCall([&](cublasHandle_t handle) {
      CUBlas<T>::GEMM(handle,
                      cuTransB,
                      cuTransA,
                      N,
                      M,
                      K,
                      &alpha,
                      B,
                      ldb,
                      A,
                      lda,
                      &beta,
                      C,
                      ldc);
    });

#if CUDA_VERSION >= 8000
  }
#endif  // CUDA_VERSION >= 8000
}

template <>
template <>
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
inline void Blas<phi::GPUContext>::GEMM(bool transA,
                                        bool transB,
                                        int M,
                                        int N,
                                        int K,
                                        phi::dtype::float16 alpha,
                                        const phi::dtype::float16 *A,
                                        int lda,
                                        const phi::dtype::float16 *B,
                                        int ldb,
                                        phi::dtype::float16 beta,
                                        phi::dtype::float16 *C,
                                        int ldc) const {
1294 1295 1296 1297 1298 1299
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  cublasOperation_t cuTransA = transA ? CUBLAS_OP_T : CUBLAS_OP_N;
  cublasOperation_t cuTransB = transB ? CUBLAS_OP_T : CUBLAS_OP_N;

  context_.CublasCall([&](cublasHandle_t handle) {
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
    CUBlas<phi::dtype::float16>::GEMM(handle,
                                      cuTransB,
                                      cuTransA,
                                      N,
                                      M,
                                      K,
                                      &alpha,
                                      B,
                                      ldb,
                                      A,
                                      lda,
                                      &beta,
                                      C,
                                      ldc);
1314 1315 1316 1317 1318
  });
}

template <>
template <typename T>
1319
void Blas<phi::GPUContext>::AXPY(int n, T alpha, const T *x, T *y) const {
1320 1321 1322 1323 1324 1325 1326
  context_.CublasCall([&](cublasHandle_t handle) {
    CUBlas<T>::AXPY(handle, n, &alpha, x, 1, y, 1);
  });
}

template <>
template <typename T>
1327
void Blas<phi::GPUContext>::SCAL(int n, const T alpha, T *x) const {
1328 1329 1330 1331 1332 1333
  context_.CublasCall(
      [&](cublasHandle_t handle) { CUBlas<T>::SCAL(handle, n, &alpha, x, 1); });
}

template <>
template <typename T>
1334
void Blas<phi::GPUContext>::VCOPY(int n, const T *x, T *y) const {
1335 1336 1337 1338 1339 1340
  context_.CublasCall(
      [&](cublasHandle_t handle) { CUBlas<T>::VCOPY(handle, n, x, 1, y, 1); });
}

template <>
template <typename T>
1341 1342 1343 1344 1345 1346 1347
void Blas<phi::GPUContext>::GEMV(bool trans_a,
                                 int M,
                                 int N,
                                 T alpha,
                                 const T *A,
                                 const T *B,
                                 T beta,
1348 1349
                                 T *C) const {
  cublasOperation_t cuTransA = !trans_a ? CUBLAS_OP_T : CUBLAS_OP_N;
1350

1351 1352 1353 1354
  context_.CublasCall([&](cublasHandle_t handle) {
    CUBlas<T>::GEMV(handle, cuTransA, N, M, &alpha, A, N, B, 1, &beta, C, 1);
  });
}
1355

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
template <>
template <>
inline void Blas<phi::GPUContext>::GEMV(bool trans_a,
                                        int M,
                                        int N,
                                        phi::dtype::float16 alpha,
                                        const phi::dtype::float16 *A,
                                        const phi::dtype::float16 *B,
                                        phi::dtype::float16 beta,
                                        phi::dtype::float16 *C) const {
  // Because cublas doesn't support half gemv, we use cublasHgemm to achieve it.
  if (trans_a) {
    this->template GEMM<phi::dtype::float16>(
        CblasNoTrans, CblasNoTrans, 1, N, M, alpha, B, A, beta, C);
  } else {
    this->template GEMM<phi::dtype::float16>(
        CblasNoTrans, CblasNoTrans, M, 1, N, alpha, A, B, beta, C);
  }
}
1375

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
template <>
template <>
inline void Blas<phi::GPUContext>::GEMV(bool trans_a,
                                        int M,
                                        int N,
                                        phi::dtype::bfloat16 alpha,
                                        const phi::dtype::bfloat16 *A,
                                        const phi::dtype::bfloat16 *B,
                                        phi::dtype::bfloat16 beta,
                                        phi::dtype::bfloat16 *C) const {
  // Because cublas doesn't support bfloat gemv, we use cublasHgemm to achieve
  // it.
  if (trans_a) {
    this->template GEMM<phi::dtype::bfloat16>(
        CblasNoTrans, CblasNoTrans, 1, N, M, alpha, B, A, beta, C);
  } else {
    this->template GEMM<phi::dtype::bfloat16>(
        CblasNoTrans, CblasNoTrans, M, 1, N, alpha, A, B, beta, C);
1394 1395 1396 1397 1398
  }
}

template <>
template <typename T>
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
void Blas<phi::GPUContext>::BatchedGEMM(CBLAS_TRANSPOSE transA,
                                        CBLAS_TRANSPOSE transB,
                                        int M,
                                        int N,
                                        int K,
                                        T alpha,
                                        const T *A,
                                        const T *B,
                                        T beta,
                                        T *C,
                                        int batchCount,
                                        int64_t strideA,
                                        int64_t strideB) const {
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  cublasOperation_t cuTransA =
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB =
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  const int64_t strideC = M * N;

#if CUDA_VERSION >= 9010
  if ((FLAGS_enable_cublas_tensor_op_math && (std::is_same<T, float>::value)) ||
1425
      std::is_same<T, phi::dtype::float16>::value) {
1426 1427 1428 1429 1430 1431 1432
    cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT;
    bool use_tensor_op_math = context_.tensor_core_available();
    if (use_tensor_op_math) {
      algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
    }
    VLOG(5) << "use_tensor_op_math: "
            << (use_tensor_op_math ? "True" : "False");
1433 1434
    VLOG(4) << "use_half_precision_compute_type: "
            << FLAGS_gemm_use_half_precision_compute_type;
1435 1436

    auto fp = std::is_same<T, float>::value ? CUDA_R_32F : CUDA_R_16F;
S
sneaxiy 已提交
1437 1438 1439 1440 1441
#if CUDA_VERSION >= 11000
    auto compute_type = CUBLAS_COMPUTE_32F;
#else
    auto compute_type = CUDA_R_32F;
#endif
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451

    float h_alpha = static_cast<float>(alpha);
    float h_beta = static_cast<float>(beta);
    void *a = static_cast<void *>(&h_alpha);
    void *b = static_cast<void *>(&h_beta);
    // set ComputeType as CUDA_R_32F for fp16, for better accuracy
    if (FLAGS_gemm_use_half_precision_compute_type == true &&
        std::is_same<T, phi::dtype::float16>::value) {
      a = static_cast<void *>(&alpha);
      b = static_cast<void *>(&beta);
S
sneaxiy 已提交
1452 1453 1454
#if CUDA_VERSION >= 11000
      compute_type = CUBLAS_COMPUTE_16F;
#else
1455
      compute_type = CUDA_R_16F;
S
sneaxiy 已提交
1456
#endif
1457 1458
    }

1459 1460
    context_.TensorCoreCublasCallIfAvailable([&](cublasHandle_t handle) {
      PADDLE_ENFORCE_GPU_SUCCESS(
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
          phi::dynload::cublasGemmStridedBatchedEx(handle,
                                                   cuTransB,
                                                   cuTransA,
                                                   N,
                                                   M,
                                                   K,
                                                   a,
                                                   B,
                                                   fp,
                                                   ldb,
                                                   strideB,
                                                   A,
                                                   fp,
                                                   lda,
                                                   strideA,
                                                   b,
                                                   C,
                                                   fp,
                                                   ldc,
                                                   strideC,
                                                   batchCount,
                                                   compute_type,
                                                   algo));
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
    });
  } else {
#endif  // CUDA_VERSION >= 9010

    context_.CublasCall([&](cublasHandle_t handle) {
      CUBlas<T>::GEMM_STRIDED_BATCH(handle,
                                    cuTransB,
                                    cuTransA,
                                    N,
                                    M,
                                    K,
                                    &alpha,
                                    B,
                                    ldb,
                                    strideB,
                                    A,
                                    lda,
                                    strideA,
                                    &beta,
                                    C,
                                    ldc,
                                    strideC,
                                    batchCount);
    });

#if CUDA_VERSION >= 9010
  }
#endif  // CUDA_VERSION >= 9010
}

template <>
template <>
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
inline void Blas<phi::GPUContext>::BatchedGEMM(CBLAS_TRANSPOSE transA,
                                               CBLAS_TRANSPOSE transB,
                                               int M,
                                               int N,
                                               int K,
                                               phi::dtype::bfloat16 alpha,
                                               const phi::dtype::bfloat16 *A,
                                               const phi::dtype::bfloat16 *B,
                                               phi::dtype::bfloat16 beta,
                                               phi::dtype::bfloat16 *C,
                                               int batchCount,
                                               int64_t strideA,
                                               int64_t strideB) const {
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
#if CUDA_VERSION >= 11000
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  cublasOperation_t cuTransA =
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB =
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  const int64_t strideC = M * N;

  float h_alpha = static_cast<float>(alpha);
  float h_beta = static_cast<float>(beta);

  cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT;
  bool use_tensor_op_math = context_.tensor_core_available();
  if (use_tensor_op_math) {
    algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
  }
  VLOG(5) << "use_tensor_op_math: " << (use_tensor_op_math ? "True" : "False");

  context_.TensorCoreCublasCallIfAvailable([&](cublasHandle_t handle) {
    PADDLE_ENFORCE_GPU_SUCCESS(
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
        phi::dynload::cublasGemmStridedBatchedEx(handle,
                                                 cuTransB,
                                                 cuTransA,
                                                 N,
                                                 M,
                                                 K,
                                                 &h_alpha,
                                                 B,
                                                 CUDA_R_16BF,
                                                 ldb,
                                                 strideB,
                                                 A,
                                                 CUDA_R_16BF,
                                                 lda,
                                                 strideA,
                                                 &h_beta,
                                                 C,
                                                 CUDA_R_16BF,
                                                 ldc,
                                                 strideC,
                                                 batchCount,
                                                 CUBLAS_COMPUTE_32F,
                                                 algo));
1576 1577 1578
  });
#else
  // raise error
1579
  PADDLE_THROW(phi::errors::Unimplemented(
1580 1581 1582 1583 1584 1585 1586
      "cublasGemmStridedBatchedEx with bfloat16 is not supported on cuda <= "
      "11"));
#endif  // CUDA_VERSION >= 11000
}

template <>
template <typename T>
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
void Blas<phi::GPUContext>::BatchedGEMM(CBLAS_TRANSPOSE transA,
                                        CBLAS_TRANSPOSE transB,
                                        int M,
                                        int N,
                                        int K,
                                        T alpha,
                                        const T **A,
                                        const T **B,
                                        T beta,
                                        T **C,
                                        int batchCount) const {
1598 1599 1600 1601 1602 1603 1604 1605
  for (int k = 0; k < batchCount; ++k) {
    this->template GEMM<T>(
        transA, transB, M, N, K, alpha, A[k], B[k], beta, C[k]);
  }
}

template <>
template <>
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
inline void Blas<phi::GPUContext>::BatchedGEMM(CBLAS_TRANSPOSE transA,
                                               CBLAS_TRANSPOSE transB,
                                               int M,
                                               int N,
                                               int K,
                                               phi::dtype::float16 alpha,
                                               const phi::dtype::float16 **A,
                                               const phi::dtype::float16 **B,
                                               phi::dtype::float16 beta,
                                               phi::dtype::float16 **C,
                                               int batchCount) const {
1617
  for (int k = 0; k < batchCount; ++k) {
1618
    this->template GEMM<phi::dtype::float16>(
1619 1620 1621 1622 1623 1624
        transA, transB, M, N, K, alpha, A[k], B[k], beta, C[k]);
  }
}

template <>
template <>
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
inline void Blas<phi::GPUContext>::BatchedGEMM(CBLAS_TRANSPOSE transA,
                                               CBLAS_TRANSPOSE transB,
                                               int M,
                                               int N,
                                               int K,
                                               phi::dtype::bfloat16 alpha,
                                               const phi::dtype::bfloat16 **A,
                                               const phi::dtype::bfloat16 **B,
                                               phi::dtype::bfloat16 beta,
                                               phi::dtype::bfloat16 **C,
                                               int batchCount) const {
1636
  for (int k = 0; k < batchCount; ++k) {
1637
    this->template GEMM<phi::dtype::bfloat16>(
1638 1639 1640 1641 1642 1643
        transA, transB, M, N, K, alpha, A[k], B[k], beta, C[k]);
  }
}

template <>
template <typename T>
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
void Blas<phi::GPUContext>::TRSM(CBLAS_SIDE side,
                                 CBLAS_UPLO uplo,
                                 CBLAS_TRANSPOSE transA,
                                 CBLAS_DIAG diag,
                                 int M,
                                 int N,
                                 T alpha,
                                 const T *A,
                                 int lda,
                                 T *B,
                                 int ldb) const {
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
  // solve row major `op ( A ) X = α B` by taking it as `X' op ( A' )  =  α B'`
  // where ' stands for transpose
  cublasSideMode_t cuSide =
      (side == CblasLeft) ? CUBLAS_SIDE_RIGHT : CUBLAS_SIDE_LEFT;
  cublasFillMode_t cuUplo =
      (uplo == CblasLower) ? CUBLAS_FILL_MODE_UPPER : CUBLAS_FILL_MODE_LOWER;
  // use CUBLAS_OP_C (conjugate transpose) for complex
  cublasOperation_t cuTransA =
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasDiagType_t cuDiag =
      (diag == CblasUnit) ? CUBLAS_DIAG_UNIT : CUBLAS_DIAG_NON_UNIT;

  context_.CublasCall([&](cublasHandle_t handle) {
    CUBlas<T>::TRSM(
        handle, cuSide, cuUplo, cuTransA, cuDiag, N, M, &alpha, A, lda, B, ldb);
  });
}

template <>
template <typename T>
1675
void Blas<phi::GPUContext>::BatchedGETRF(
1676 1677 1678 1679 1680 1681 1682 1683
    int n, T **a, int *ipiv, int *info, int batch_size) const {
  context_.CublasCall([&](cublasHandle_t handle) {
    CUBlas<T>::GETRF_BATCH(handle, n, a, n, ipiv, info, batch_size);
  });
}

template <>
template <typename T>
1684 1685 1686 1687 1688 1689
void Blas<phi::GPUContext>::BatchedGETRI(int n,
                                         const T **a,
                                         const int *ipiv,
                                         T **a_inv,
                                         int *info,
                                         int batch_size) const {
1690 1691 1692
  PADDLE_ENFORCE_NE(
      a_inv,
      a,
1693
      phi::errors::InvalidArgument(
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
          "cuBLAS fuction 'cublas<S/D>getrfBatched' cannot be executed "
          "in-place. The memory space of output matrix (address: %p) cannot "
          "overlap memory space of input matrix (address: %p).",
          a_inv,
          a));
  context_.CublasCall([&](cublasHandle_t handle) {
    CUBlas<T>::GETRI_BATCH(handle, n, a, n, ipiv, a_inv, n, info, batch_size);
  });
}

template <>
template <typename T>
1706
void Blas<phi::GPUContext>::BatchedMatInv(
1707 1708 1709 1710 1711 1712 1713 1714
    int n, const T **a, T **a_inv, int *info, int batch_size) const {
  context_.CublasCall([&](cublasHandle_t handle) {
    CUBlas<T>::MATINV_BATCH(handle, n, a, n, a_inv, n, info, batch_size);
  });
}

template <>
template <typename T>
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
void Blas<phi::GPUContext>::BatchedGETRS(CBLAS_TRANSPOSE trans,
                                         int n,
                                         int nrhs,
                                         const T **a,
                                         int lda,
                                         int *ipiv,
                                         T **b,
                                         int ldb,
                                         int *info,
                                         int batch_size) const {
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
  // use CUBLAS_OP_C (conjugate transpose) for complex
  cublasOperation_t cuTrans =
      (trans == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  context_.CublasCall([&](cublasHandle_t handle) {
    CUBlas<T>::GETRS_BATCH(
        handle, cuTrans, n, nrhs, a, lda, ipiv, b, ldb, info, batch_size);
  });
}

template <>
template <typename T>
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
void Blas<phi::GPUContext>::BatchedTRSM(CBLAS_SIDE side,
                                        CBLAS_UPLO uplo,
                                        CBLAS_TRANSPOSE transA,
                                        CBLAS_DIAG diag,
                                        int M,
                                        int N,
                                        T alpha,
                                        const T **A,
                                        int lda,
                                        T **B,
                                        int ldb,
                                        int batch_size) const {
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
  // solve row major `op ( A ) X = α B` by taking it as `X' op ( A' )  =  α B'`
  // where ' stands for transpose
  cublasSideMode_t cuSide =
      (side == CblasLeft) ? CUBLAS_SIDE_RIGHT : CUBLAS_SIDE_LEFT;
  cublasFillMode_t cuUplo =
      (uplo == CblasLower) ? CUBLAS_FILL_MODE_UPPER : CUBLAS_FILL_MODE_LOWER;
  // use CUBLAS_OP_C (conjugate transpose) for complex
  cublasOperation_t cuTransA =
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasDiagType_t cuDiag =
      (diag == CblasUnit) ? CUBLAS_DIAG_UNIT : CUBLAS_DIAG_NON_UNIT;

  context_.CublasCall([&](cublasHandle_t handle) {
    CUBlas<T>::TRSM_BATCH(handle,
                          cuSide,
                          cuUplo,
                          cuTransA,
                          cuDiag,
                          N,
                          M,
                          &alpha,
                          A,
                          lda,
                          B,
                          ldb,
                          batch_size);
  });
}

}  // namespace funcs
1778
}  // namespace phi