activation.py 56.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
from paddle import _C_ops, _legacy_C_ops, in_dynamic_mode
17
from paddle.framework import core
18
from paddle.utils.inplace_utils import inplace_apis_in_dygraph_only
19 20

from ...fluid.data_feeder import check_dtype, check_variable_and_dtype
21
from ...fluid.framework import convert_np_dtype_to_dtype_
22 23 24 25 26
from ...fluid.layer_helper import LayerHelper
from ...tensor.manipulation import chunk
from ...tensor.math import tanh  # noqa: F401
from ...tensor.math import tanh_  # noqa: F401
from ...tensor.ops import sigmoid  # noqa: F401
27

28 29
__all__ = []

30

31 32 33 34
def celu(x, alpha=1.0, name=None):
    r"""
    celu activation.

35 36
    Apply the following operation to each element of the input Tensor accroding to the `Continuously Differentiable Exponential Linear Units <https://arxiv.org/abs/1704.07483>`_.

37 38
    .. math::

39
        \operatorname{celu}(x) = \max(0, x) + \min(0, \alpha * (\mathrm{e}^{x/\alpha}-1))
40 41

    Parameters:
42 43
        x (Tensor): The input Tensor with data type float16, float32, or float64.
        alpha (float, optional): The 'alpha' value of the CELU formula. Default is 1.0.
44
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
45 46

    Returns:
47
        A ``Tensor`` with the same data type and shape as ``x`` .
48 49 50 51 52 53 54 55 56 57 58 59 60

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
            out = F.celu(x, alpha=0.2)
            # [[-0.19865242,  6.        ],
            #  [ 1.        , 15.60000038]]
    """
    if alpha == 0:
        raise ZeroDivisionError("alpha cannot be 0 for celu")
61
    if in_dynamic_mode():
62
        return _C_ops.celu(x, alpha)
63 64
    else:
        check_variable_and_dtype(
65
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'celu'
66 67 68 69 70 71 72 73 74 75
        )
        helper = LayerHelper("celu", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='celu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'alpha': alpha},
        )
        return out
76 77


78
def elu(x, alpha=1.0, name=None):
79
    r"""
80 81
    elu activation.

82
    .. math::
83

Z
zhupengyang 已提交
84 85 86 87 88 89 90
        elu(x)=
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * (e^{x} - 1),& &\text{if } \ x <= 0
                \end{array}
            \right.
91 92 93 94

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
95
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
96

97 98
    Returns:
        A Tensor with the same data type and shape as ``x`` .
99

100 101 102
    Examples:
        .. code-block:: python

103 104
            import paddle
            import paddle.nn.functional as F
105

Z
zhupengyang 已提交
106
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
107
            out = F.elu(x, alpha=0.2)
108 109
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
110 111
    """

112
    if in_dynamic_mode():
113
        return _C_ops.elu(x, alpha)
114

115 116
    else:
        check_variable_and_dtype(
117
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'elu'
118 119 120 121 122 123 124 125 126 127
        )
        helper = LayerHelper("elu", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='elu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'alpha': alpha},
        )
        return out
128 129


130
@inplace_apis_in_dygraph_only
131 132 133 134 135
def elu_(x, alpha=1.0, name=None):
    r"""
    Inplace version of ``elu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_elu`.
    """
136
    assert alpha >= 0.0, "elu_ only support alpha >= 0, please use elu instead."
137
    if in_dynamic_mode():
138 139
        return _C_ops.elu_(x, alpha)
    return _legacy_C_ops.elu_(x, 'alpha', alpha)
140 141


142
def gelu(x, approximate=False, name=None):
143
    r"""
144 145
    gelu activation.

146 147
    The activation function of Gelu is calculated element by element. More information refers to :ref: `Gaussian Error Linear Units`.

148
    if approximate is True
149 150 151

    .. math::

152
        gelu(x) = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3})))
153

154
    else
155 156 157

    .. math::

158
        gelu(x) = 0.5 * x * (1 + erf(\frac{x}{\sqrt{2}}))
159

160 161
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
162 163
        approximate (bool, optional): Whether to enable approximation. Default is False.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
164

165 166
    Returns:
        A Tensor with the same data type and shape as ``x`` .
167

168 169 170
    Examples:
        .. code-block:: python

171 172
            import paddle
            import paddle.nn.functional as F
173

Z
zhupengyang 已提交
174 175 176 177 178 179 180
            x = paddle.to_tensor([[-1, 0.5], [1, 1.5]])
            out1 = F.gelu(x)
            # [[-0.15865529,  0.34573123],
            #  [ 0.84134471,  1.39978933]]
            out2 = F.gelu(x, True)
            # [[-0.15880799,  0.34571400],
            #  [ 0.84119201,  1.39957154]]
181 182
    """

183
    if in_dynamic_mode():
184
        return _C_ops.gelu(x, approximate)
185 186
    else:
        check_variable_and_dtype(
187
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'gelu'
188 189 190 191 192 193 194 195 196 197
        )
        helper = LayerHelper("gelu", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='gelu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'approximate': approximate},
        )
        return out
198 199


200
def hardshrink(x, threshold=0.5, name=None):
201
    r"""
202 203 204 205 206
    hard shrinkage activation

    .. math::

        hardshrink(x)=
207 208 209 210 211 212 213
            \left\{
                \begin{array}{rcl}
                x,&  &if \ {x > threshold}  \\
                x,&  &if \ {x < -threshold}   \\
                0,&  &if \ {others} &
                \end{array}
            \right.
214 215 216

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
217 218
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
219 220 221 222 223 224 225

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

226 227
            import paddle
            import paddle.nn.functional as F
228

Z
zhupengyang 已提交
229
            x = paddle.to_tensor([-1, 0.3, 2.5])
230
            out = F.hardshrink(x) # [-1., 0., 2.5]
231 232

    """
233
    if in_dynamic_mode():
234
        return _C_ops.hardshrink(x, threshold)
235 236
    else:
        check_variable_and_dtype(
237
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'hardshrink'
238 239 240 241 242 243 244 245 246 247
        )
        helper = LayerHelper('hardshrink', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='hard_shrink',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'threshold': threshold},
        )
        return out
248 249


250
def hardtanh(x, min=-1.0, max=1.0, name=None):
251
    r"""
252
    hardtanh activation. Calculate the `hardtanh` of input `x`.
253 254 255

    .. math::

256 257 258 259 260 261 262 263
        hardtanh(x)=
            \left\{
                \begin{array}{cll}
                    max,& & \text{if } x > max \\
                    min,& & \text{if } x < min \\
                    x,& & \text{otherwise}
                \end{array}
            \right.
264

265
    Parameters:
266 267 268
        x (Tensor): The input Tensor with data type float32, float64.
        min (float, optional): The minimum value of the linear region range. Default is -1.
        max (float, optional): The maximum value of the linear region range. Default is 1.
269
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
270 271 272 273 274 275 276 277 278 279

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

280
            x = paddle.to_tensor([-1.5, 0.3, 2.5])
281 282 283
            out = F.hardtanh(x) # [-1., 0.3, 1.]
    """

284
    if in_dynamic_mode():
285
        return _C_ops.hardtanh(x, min, max)
286 287 288 289
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'hardtanh'
        )
H
hong 已提交
290

291 292 293 294 295 296 297 298 299
        helper = LayerHelper('hardtanh', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='brelu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'t_min': min, 't_max': max},
        )
        return out
300 301


302
def hardsigmoid(x, slope=0.1666667, offset=0.5, name=None):
303
    r"""
304
    hardsigmoid activation. Calculate the `hardsigmoid` of input `x`.
305 306 307 308 309 310
    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        hardsigmoid(x)=
311 312 313 314 315 316 317
            \left\{
                \begin{array}{lcl}
                0, & &\text{if } \ x \leq -3 \\
                1, & &\text{if } \ x \geq 3 \\
                slope * x + offset, & &\text{otherwise}
                \end{array}
            \right.
318 319 320

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
321 322
        slope (float, optional): The slope of hardsigmoid function. Default is 0.1666667.
        offset (float, optional): The offset of hardsigmoid function. Default is 0.5.
323
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
324 325 326 327 328 329 330 331 332 333 334 335 336 337

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardsigmoid(x) # [0., 1., 0.666667]
    """

338
    if in_dynamic_mode():
339
        return _C_ops.hardsigmoid(x, slope, offset)
340 341
    else:
        check_variable_and_dtype(
342
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'hardsigmoid'
343
        )
H
hong 已提交
344

345 346 347 348 349 350 351 352 353
        helper = LayerHelper('hardsigmoid', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='hard_sigmoid',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'slope': slope, 'offset': offset},
        )
        return out
354 355 356


def hardswish(x, name=None):
357
    r"""
358 359 360
    hardswish activation. hardswish is proposed in MobileNetV3, and performs
    better in computational stability and efficiency compared to swish function.
    For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf
361 362 363 364

    .. math::

        hardswish(x)=
365 366 367 368 369 370 371
            \left\{
                \begin{array}{cll}
                0 &, & \text{if } x \leq -3 \\
                x &, & \text{if } x \geq 3 \\
                \frac{x(x+3)}{6} &, & \text{otherwise}
                \end{array}
            \right.
372 373 374

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
375
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
376 377 378 379 380 381 382 383 384 385 386 387 388

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardswish(x) # [0., 5., 0.666667]
    """
389
    if in_dynamic_mode():
390
        return _C_ops.hardswish(x)
391 392
    else:
        check_variable_and_dtype(
393
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'hardswish'
394
        )
395

396 397 398
        threshold = 6.0
        scale = 6.0
        offset = 3.0
399 400 401
        helper = LayerHelper('hardswish', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
402 403 404 405
            type='hard_swish',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'threshold': threshold, 'scale': scale, 'offset': offset},
406 407
        )
        return out
408 409


410
def leaky_relu(x, negative_slope=0.01, name=None):
411
    r"""
412
    leaky_relu activation. The calculation formula is:
413

414
    .. math::
415 416 417 418 419 420 421
        leaky\_relu(x)=
        \left\{
            \begin{array}{rcl}
                x, & & if \ x >= 0 \\
                negative\_slope * x, & & otherwise \\
            \end{array}
        \right.
422 423 424 425 426

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
427
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
428 429 430 431 432 433 434 435 436 437

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
438
            x = paddle.to_tensor([-2., 0., 1.])
439 440 441
            out = F.leaky_relu(x)
            print(out)
            # [-0.02, 0., 1.]
442 443

    """
444
    if in_dynamic_mode():
445
        return _C_ops.leaky_relu(x, negative_slope)
446 447
    else:
        check_variable_and_dtype(
448
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'leaky_relu'
449 450 451 452 453 454 455 456 457 458
        )
        helper = LayerHelper('leaky_relu', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='leaky_relu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'alpha': negative_slope},
        )
        return out
459 460


461
def prelu(x, weight, data_format="NCHW", name=None):
462
    """
463
    prelu activation. The calculation formula is follows:
464 465 466 467 468

    .. math::

        prelu(x) = max(0, x) + weight * min(0, x)

469 470
    x and weight is input Tensor.

471 472 473
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        weight (Tensor): The learnable parameter with data type same as ``x``.
474
            The weight shape is [], [1] or [in], where `in` is the input channel of ``x``.
475
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
476 477
        data_format(str, optional): Data format that specifies the layout of input.
            It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW".
478 479 480 481 482 483 484 485 486 487

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

488
            data = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
Z
zhupengyang 已提交
489 490 491 492
                               [ 3.0, -4.0,  5.0, -6.0],
                               [-7.0, -8.0,  8.0,  9.0]],
                              [[ 1.0, -2.0, -3.0,  4.0],
                               [-5.0,  6.0,  7.0, -8.0],
493 494 495 496 497
                               [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            w = paddle.to_tensor([0.25], dtype='float32')
            out = F.prelu(data, w)
            print(out)
498 499 500 501 502 503 504
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """
505
    assert (
506 507
        len(weight.shape) == 0 or len(weight.shape) == 1
    ), "The dim count of weight shape should be 0 or 1 in prelu()."
508 509

    mode = 'all'
510
    if len(weight.shape) == 1 and weight.shape[0] > 1:
511
        true_data_format = [
512 513 514 515 516 517 518
            'NC',
            'NCL',
            'NCHW',
            'NCDHW',
            'NLC',
            'NHWC',
            'NDHWC',
519 520 521 522
        ]
        if data_format not in true_data_format:
            raise ValueError(
                "data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', "
523 524
                "'NLC', 'NHWC', 'NDHWC' but receive {}".format(data_format)
            )
525 526 527

        data_format = 'NCHW' if data_format[1] == 'C' else 'NHWC'

528 529 530
        assert (
            len(x.shape) > 1
        ), "The dim count of x should be equal or larger than 2 in prelu() when weight shape is not [1]."
531

532
        # NOTE(GuoxiaWang): support NHWC data format
533
        if data_format == 'NHWC':
534 535 536
            assert (
                weight.shape[0] == x.shape[-1]
            ), "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
537
        else:
538 539 540
            assert (
                weight.shape[0] == x.shape[1]
            ), "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
541 542
        mode = 'channel'

543
    if in_dynamic_mode():
544
        return _C_ops.prelu(x, weight, data_format, mode)
545
    else:
W
Weilong Wu 已提交
546
        check_variable_and_dtype(
547
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'prelu'
W
Weilong Wu 已提交
548 549
        )
        check_variable_and_dtype(
550 551 552 553
            weight,
            'weight',
            ['float16', 'float32', 'float64', 'uint16'],
            'prelu',
W
Weilong Wu 已提交
554
        )
555 556 557 558 559 560 561
        helper = LayerHelper('prelu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type="prelu",
            inputs={"X": x, "Alpha": weight},
            outputs={"Out": out},
            attrs={"mode": mode, "data_format": data_format},
562
        )
563
        return out
564 565


566
def rrelu(x, lower=1.0 / 8.0, upper=1.0 / 3.0, training=True, name=None):
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
    r"""
    rrelu activation.

    Applies the randomized leaky rectified liner unit function to improve generalization performance,
    as described in the paper:
    `Empirical Evaluation of Rectified Activations in Convolutional Network <https://arxiv.org/abs/1505.00853>`_

    During training, randomly samples the negative slope for activation values as described below:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    a * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`a` is randomly sampled from uniform distribution in range (:math:`lower`, :math:`upper`),

    In the test phase, the negative slope will take the average value of :math:`lower` and :math:`upper`:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    (lower + upper) * 0.5 * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`lower` and :math:`upper` are the bounds of uniform distribution.

    Parameters:
        x (Tensor): The input Tensor with data type float16, float32, float64.
606 607
        lower (float, optional): The lower bound of uniform distribution. Default: 0.125.
        upper (float, optional): The upper bound of uniform distribution. Default: 0.3333333333333333.
608
        training (bool, optional): Current mode is in training or others.  Default is True.
609
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input_tensor = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
                                            [ 3.0, -4.0,  5.0, -6.0],
                                            [-7.0, -8.0,  8.0,  9.0]],
                                            [[ 1.0, -2.0, -3.0,  4.0],
                                            [-5.0,  6.0,  7.0, -8.0],
                                            [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            out = F.rrelu(input_tensor, 0.1, 0.3)
628
            print(out)
629 630 631 632 633 634 635 636 637
            #[[[[-0.20000899  3.         -0.8810822   5.        ]
            #   [ 3.         -0.55175185  5.         -1.0776101 ]
            #   [-1.0680687  -1.9896201   8.          9.        ]]
            #  [[ 1.         -0.5238267  -0.65515125  4.        ]
            #   [-1.3766339   6.          7.         -2.3465784 ]
            #   [ 6.          7.          8.          9.        ]]]]
    """
    if not isinstance(lower, float) or not isinstance(upper, float):
        raise TypeError(
638 639 640 641
            "The lower and upper values must be float type. Received: lower {}, upper {}.".format(
                lower, upper
            )
        )
642 643 644

    if lower < 0 or lower > 1:
        raise ValueError(
645 646 647 648
            "The lower value must be no less than zero or greater than one. Received: {}.".format(
                lower
            )
        )
649 650 651

    if upper < lower:
        raise ValueError(
652 653 654 655
            "The upper value must be greater than lower value. Received: lower {}, upper {}.".format(
                lower, upper
            )
        )
656 657 658 659

    if upper > 1:
        raise ValueError(
            "The upper value must be no greater than one. Received: {}.".format(
660 661 662
                upper
            )
        )
663 664 665

    is_test = not training

666
    if in_dynamic_mode():
W
Weilong Wu 已提交
667
        return _C_ops.rrelu(x, lower, upper, is_test)
668
    else:
W
Weilong Wu 已提交
669
        check_variable_and_dtype(
670
            x, 'X', ['float16', 'uint16', 'float32', 'float64'], 'rrelu'
W
Weilong Wu 已提交
671
        )
672 673 674 675 676 677 678 679 680 681 682
        helper = LayerHelper('rrelu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        noise = helper.create_variable_for_type_inference(dtype=x.dtype)
        attrs = {'lower': lower, 'upper': upper, 'is_test': is_test}
        helper.append_op(
            type='rrelu',
            inputs={"X": x},
            outputs={"Out": out, "Noise": noise},
            attrs=attrs,
        )
        return out
683 684


685
def relu(x, name=None):
686
    """
687
    relu activation. The calculation formula is follows:
688

689
    .. math::
690 691 692

        out = max(x, 0)

693 694
    x is input Tensor.

695
    Parameters:
696
        x (Tensor): The input Tensor with data type float32, float64.
697
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
698 699

    Returns:
700
        A Tensor with the same data type and shape as ``x`` .
701 702 703 704

    Examples:
        .. code-block:: python

705 706
            import paddle
            import paddle.nn.functional as F
707

708 709 710 711
            x = paddle.to_tensor([-2, 0, 1], dtype='float32')
            out = F.relu(x)
            print(out)
            # [0., 0., 1.]
712 713
    """

714
    if in_dynamic_mode():
W
wanghuancoder 已提交
715
        return _C_ops.relu(x)
716 717
    else:
        check_variable_and_dtype(
718
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'relu'
719 720 721 722 723
        )
        helper = LayerHelper('relu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='relu', inputs={'X': x}, outputs={'Out': out})
        return out
724 725


726
@inplace_apis_in_dygraph_only
727 728 729 730 731
def relu_(x, name=None):
    """
    Inplace version of ``relu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_relu`.
    """
732
    return _C_ops.relu_(x)
733 734


735
def log_sigmoid(x, name=None):
736
    r"""
737
    log_sigmoid activation.
738

739
    .. math::
740

741
        log\_sigmoid(x) = log \frac{1}{1 + e^{-x}}
742

743 744
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
745
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
746

747 748
    Returns:
        A Tensor with the same data type and shape as ``x`` .
749

750 751 752
    Examples:
        .. code-block:: python

753 754
            import paddle
            import paddle.nn.functional as F
755

756 757
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.log_sigmoid(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
758 759
    """

760
    if in_dynamic_mode():
761
        return _C_ops.logsigmoid(x)
762 763 764 765 766 767 768 769 770 771
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'log_sigmoid'
        )
        helper = LayerHelper("log_sigmoid", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logsigmoid', inputs={'X': x}, outputs={'Out': out}
        )
        return out
772 773


774
def maxout(x, groups, axis=1, name=None):
775
    r"""
776 777 778 779 780 781 782 783
    maxout activation.

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

784 785 786 787 788 789 790 791 792
        \begin{array}{l}
        &out_{si+j} = \max_{k} x_{gsi + sk + j} \\
        &g = groups \\
        &s = \frac{input.size}{num\_channels} \\
        &0 \le i < \frac{num\_channels}{groups} \\
        &0 \le j < s \\
        &0 \le k < groups
        \end{array}

793 794 795

    Parameters:
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C], the data type
796
            of input is float16, float32 or float64.
797
        groups (int): The groups number of maxout. `groups` specifies the
798
            index of channel dimension where maxout will be performed. This must be
799
            a factor of number of features.
800 801 802 803 804
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . ``axis`` only supports 1, 3 or -1.
            Default is 1.
805
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827

    Returns:
        A Tensor with the same data type as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.5002636  0.22272532 0.17402348 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.02879342 0.88725346 0.61093384 0.38833922]]
            #   [[0.5231306  0.03807496 0.91661984 0.15602879]
            #    [0.666127   0.616567   0.30741522 0.24044901]
            #    [0.7142536  0.7351477  0.31588817 0.23782359]]]]
            out = F.maxout(x, groups=2)
            # [[[[0.5231306  0.22272532 0.91661984 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.7142536  0.88725346 0.61093384 0.38833922]]]]
    """
828
    if in_dynamic_mode():
829
        return _C_ops.maxout(x, groups, axis)
830
    else:
831 832 833
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'maxout'
        )
834 835 836 837 838 839 840
        if axis not in [1, -1, 3]:
            raise ValueError(
                "Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
                "Attr(axis): %s." % str(axis)
            )
        if axis == -1:
            axis = 3
841

842 843 844 845 846 847 848 849 850
        helper = LayerHelper('maxout', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='maxout',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'groups': groups, 'axis': axis},
        )
        return out
851 852


853 854 855 856 857 858
def relu6(x, name=None):
    """
    relu6 activation

    .. math::

859
        relu6(x) = min(max(0,x), 6)
860

861
    Parameters:
862
        x (Tensor): The input Tensor with data type float32, float64.
863
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
864 865 866 867 868 869 870

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

871 872
            import paddle
            import paddle.nn.functional as F
873

874 875 876 877
            x = paddle.to_tensor([-1, 0.3, 6.5])
            out = F.relu6(x)
            print(out)
            # [0, 0.3, 6]
878 879
    """
    threshold = 6.0
Z
zhiboniu 已提交
880
    if in_dynamic_mode():
881
        return _C_ops.relu6(x)
882

883 884 885
    check_variable_and_dtype(
        x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'relu6'
    )
886 887
    helper = LayerHelper('relu6', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
888 889 890 891 892 893
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold},
    )
894 895 896
    return out


897 898 899 900 901 902
def selu(
    x,
    scale=1.0507009873554804934193349852946,
    alpha=1.6732632423543772848170429916717,
    name=None,
):
903
    r"""
904 905 906 907
    selu activation

    .. math::

908
        selu(x)= scale *
909 910 911 912 913 914
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * e^{x} - alpha,& &\text{if } \ x <= 0
                \end{array}
            \right.
915

916
    Parameters:
917
        x (Tensor): The input Tensor with data type float32, float64.
918 919
        scale (float, optional): The value of scale(must be greater than 1.0) for selu. Default is 1.0507009873554804934193349852946.
        alpha (float, optional): The value of alpha(must be no less than zero) for selu. Default is 1.6732632423543772848170429916717.
920
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
921 922 923 924 925 926 927

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

928 929
            import paddle
            import paddle.nn.functional as F
930

931 932 933 934
            x = paddle.to_tensor([[0.0, 1.0],[2.0, 3.0]])
            out = F.selu(x)
            print(out)
            # [[0, 1.050701],[2.101402, 3.152103]]
935
    """
936 937
    if scale <= 1.0:
        raise ValueError(
938
            f"The scale must be greater than 1.0. Received: {scale}."
939
        )
940 941 942

    if alpha < 0:
        raise ValueError(
943
            f"The alpha must be no less than zero. Received: {alpha}."
944
        )
945

946
    if in_dynamic_mode():
947
        return _C_ops.selu(x, scale, alpha)
948 949 950 951 952 953 954 955 956 957 958 959 960
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'selu'
        )
        helper = LayerHelper('selu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='selu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'scale': scale, 'alpha': alpha},
        )
        return out
961 962


M
minghaoBD 已提交
963
def silu(x, name=None):
964 965 966 967 968
    r"""
    silu activation

    .. math::

M
minghaoBD 已提交
969
        silu(x) = \frac{x}{1 + e^{-x}}
970

971 972
    Where :math:`x` is the input Tensor.

M
minghaoBD 已提交
973
    Parameters:
974
        x (Tensor): The input Tensor with data type bfloat16, float16, float32, float64.
975
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
976

M
minghaoBD 已提交
977
    Returns:
978
        A Tensor with the same data type and shape as :attr:`x`.
979

M
minghaoBD 已提交
980 981
    Examples:
        .. code-block:: python
982 983 984

            import paddle
            import paddle.nn.functional as F
985

986 987
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.silu(x) # [ 0.731059, 1.761594, 2.857722, 3.928055 ]
M
minghaoBD 已提交
988 989
    """

990
    if in_dynamic_mode():
W
wanghuancoder 已提交
991
        return _C_ops.silu(x)
992 993
    else:
        check_variable_and_dtype(
994
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'silu'
995 996 997 998 999
        )
        helper = LayerHelper("silu", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='silu', inputs={'X': x}, outputs={'Out': out})
        return out
M
minghaoBD 已提交
1000 1001


1002
def softmax(x, axis=-1, dtype=None, name=None):
1003
    r"""
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

1029
        softmax[i, j] = \frac{\exp(x[i, j])}{\sum_j(exp(x[i, j])}
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

1078
    Parameters:
1079
        x (Tensor): The input Tensor with data type bfloat16, float16, float32, float64.
1080
        axis (int, optional): The axis along which to perform softmax
1081
            calculations. It should be in range [-D, D), where D is the
1082
            rank of ``x`` . If ``axis`` < 0, it works the same way as
1083
            :math:`axis + D` . Default is -1.
1084
        dtype (str, optional): The data type of the output tensor, can be bfloat16, float16, float32, float64.
1085
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1086 1087

    Returns:
1088 1089
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1090 1091 1092 1093

    Examples:
        .. code-block:: python

1094 1095
            import paddle
            import paddle.nn.functional as F
1096

1097
            x = paddle.to_tensor([[[2.0, 3.0, 4.0, 5.0],
1098 1099 1100 1101
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
1102
                        [6.0, 7.0, 8.0, 9.0]]],dtype='float32')
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
            out1 = F.softmax(x)
            out2 = F.softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
1113
    """
1114 1115 1116

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1117
    if in_dynamic_mode():
1118
        outs_cast = x if dtype is None else _C_ops.cast(x, dtype)
1119
        return _C_ops.softmax(outs_cast, axis)
1120 1121 1122 1123
    else:
        use_cudnn = True
        if dtype is None:
            check_variable_and_dtype(
1124
                x, 'x', ['uint16', 'float16', 'float32', 'float64'], 'softmax'
1125 1126 1127 1128 1129
            )
        else:
            check_dtype(
                dtype,
                'dtype',
1130
                ['uint16', 'float16', 'float32', 'float64'],
1131
                'softmax',
1132
                'If dtype is not None, it only support uint16, float16, float32 or float64.',
1133
            )
H
hong 已提交
1134

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
        helper = LayerHelper("softmax", **locals())
        outs_cast = x
        if dtype is not None:
            outs_cast = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': outs_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': dtype},
            )
1145

1146 1147
        outs_softmax = helper.create_variable_for_type_inference(
            outs_cast.dtype
1148 1149
        )
        helper.append_op(
1150 1151 1152 1153
            type='softmax',
            inputs={'X': outs_cast},
            outputs={'Out': outs_softmax},
            attrs={'axis': axis, 'use_cudnn': use_cudnn},
1154
        )
1155

1156
        return outs_softmax
1157 1158


1159
@inplace_apis_in_dygraph_only
1160 1161 1162 1163 1164 1165 1166
def softmax_(x, axis=-1, dtype=None, name=None):
    r"""
    Inplace version of ``softmax`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_softmax`.
    """
    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1167 1168 1169 1170 1171 1172
    outs_cast = (
        x
        if dtype is None
        else _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
    )
    return _C_ops.softmax_(outs_cast, axis)
1173 1174


1175
def softplus(x, beta=1, threshold=20, name=None):
1176
    r"""
1177 1178 1179
    softplus activation

    .. math::
1180 1181 1182 1183
        softplus(x)=\begin{cases}
                \frac{1}{\beta} * \log(1 + e^{\beta * x}),&x\leqslant\frac{\varepsilon}{\beta};\\
                x,&x>\frac{\varepsilon}{\beta}.
            \end{cases}
1184

1185
    Parameters:
1186
        x (Tensor): The input Tensor with data type float32, float64.
1187 1188
        beta (float, optional): The value of :math:`\beta` for softplus. Default is 1
        threshold (float, optional): The value of :math:`\varepsilon` for softplus. Default is 20
1189
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1190 1191 1192 1193 1194 1195 1196

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1197 1198
            import paddle
            import paddle.nn.functional as F
1199

1200
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3], dtype='float32')
1201
            out = F.softplus(x) # [0.513015, 0.598139, 0.744397, 0.854355]
1202
    """
W
Wang Bojun 已提交
1203

1204
    if in_dynamic_mode():
1205
        return _C_ops.softplus(x, beta, threshold)
1206 1207
    else:
        check_variable_and_dtype(
1208
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'softplus'
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
        )
        helper = LayerHelper('softplus', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='softplus',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'beta': beta, 'threshold': threshold},
        )
        return out
1219 1220 1221


def softshrink(x, threshold=0.5, name=None):
1222
    r"""
1223 1224 1225 1226
    softshrink activation

    .. math::

1227
        softshrink(x)=
1228 1229 1230 1231 1232 1233 1234
            \left\{
                \begin{array}{rcl}
                x - threshold,& & \text{if } x > threshold \\
                x + threshold,& & \text{if } x < -threshold \\
                0,& &  \text{otherwise}
            \end{array}
            \right.
1235

1236
    Parameters:
1237 1238
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
1239
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1240 1241 1242 1243 1244 1245 1246

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1247 1248
            import paddle
            import paddle.nn.functional as F
1249

1250 1251 1252 1253 1254
            x = paddle.to_tensor([-0.9, -0.2, 0.1, 0.8])
            out = F.softshrink(x)
            print(out)
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.39999998,  0.        ,  0.        ,  0.30000001])
1255
    """
1256 1257 1258
    if threshold < 0:
        raise ValueError(
            "The threshold must be no less than zero. Received: {}.".format(
1259 1260 1261
                threshold
            )
        )
1262

1263
    if in_dynamic_mode():
1264
        return _C_ops.softshrink(x, threshold)
1265 1266
    else:
        check_variable_and_dtype(
1267
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'softshrink'
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
        )
        helper = LayerHelper('softshrink', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='softshrink',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'lambda': threshold},
        )
        return out
1278 1279 1280


def softsign(x, name=None):
1281
    r"""
1282 1283 1284 1285
    softsign activation

    .. math::

1286
        softsign(x) = \frac{x}{1 + |x|}
1287

1288
    Parameters:
1289
        x (Tensor): The input Tensor with data type float32, float64.
1290
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1291 1292 1293 1294 1295 1296 1297

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1298 1299
            import paddle
            import paddle.nn.functional as F
1300

1301 1302 1303 1304 1305
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = F.softsign(x)
            print(out)
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.28571430, -0.16666666,  0.09090909,  0.23076925])
1306
    """
1307
    if in_dynamic_mode():
1308
        return _C_ops.softsign(x)
1309

1310
    check_variable_and_dtype(
1311
        x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'softsign'
1312
    )
1313 1314 1315 1316 1317 1318
    helper = LayerHelper('softsign', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='softsign', inputs={'X': x}, outputs={'Out': out})
    return out


1319
def swish(x, name=None):
1320
    r"""
1321 1322 1323 1324
    swish activation.

    .. math::

1325
        swish(x) = \frac{x}{1 + e^{-x}}
1326 1327 1328

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1329
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

1340 1341 1342 1343 1344
            x = paddle.to_tensor([-2., 0., 1.])
            out = F.swish(x)
            print(out)
            # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.23840584,  0.        ,  0.73105854])
1345
    """
1346
    if in_dynamic_mode():
1347
        return _C_ops.swish(x)
1348 1349
    else:
        check_variable_and_dtype(
1350
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'swish'
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
        )
        helper = LayerHelper('swish', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='swish',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'beta': 1.0},
        )
        return out
1361 1362


1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
def mish(x, name=None):
    r"""
    mish activation.

    ..  math::

        softplus(x) = \begin{cases}
                x, \text{if } x > \text{threshold} \\
                \ln(1 + e^{x}),  \text{otherwise}
            \end{cases}

        mish(x) = x * \tanh(softplus(x))
1375

1376 1377
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1378
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

W
wangxinxin08 已提交
1389
            x = paddle.to_tensor([-5., 0., 5.])
1390 1391
            out = F.mish(x) # [-0.03357624, 0., 4.99955208]
    """
1392
    if in_dynamic_mode():
1393
        return _C_ops.mish(x, 20)
1394 1395
    else:
        check_variable_and_dtype(
1396
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'mish'
1397 1398 1399 1400 1401
        )
        helper = LayerHelper('mish', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='mish', inputs={'X': x}, outputs={'Out': out})
        return out
1402 1403


1404 1405 1406 1407 1408 1409
def tanhshrink(x, name=None):
    """
    tanhshrink activation

    .. math::

1410
        tanhshrink(x) = x - tanh(x)
1411 1412 1413

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
1414
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1415 1416 1417 1418 1419 1420 1421

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1422 1423
            import paddle
            import paddle.nn.functional as F
1424

1425 1426 1427 1428 1429
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = F.tanhshrink(x)
            print(out)
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.02005106, -0.00262468,  0.00033200,  0.00868741])
1430
    """
1431
    if in_dynamic_mode():
1432
        return _C_ops.tanh_shrink(x)
1433 1434
    else:
        check_variable_and_dtype(
1435
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'tanhshrink'
1436 1437 1438 1439 1440 1441 1442
        )
        helper = LayerHelper('tanh_shrink', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='tanh_shrink', inputs={'X': x}, outputs={'Out': out}
        )
        return out
1443 1444


1445
def thresholded_relu(x, threshold=1.0, name=None):
1446
    r"""
1447 1448 1449 1450
    thresholded relu activation.

    .. math::

1451
        thresholded\_relu(x) =
1452 1453 1454 1455 1456 1457 1458
            \left\{
                \begin{array}{rl}
                x,& \text{if } \ x > threshold \\
                0,& \text{otherwise}
                \end{array}
            \right.

1459 1460 1461 1462

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for thresholded_relu. Default is 1.0
1463
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

1474 1475 1476 1477 1478
            x = paddle.to_tensor([2., 0., 1.])
            out = F.thresholded_relu(x)
            print(out)
            # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [2., 0., 0.])
1479 1480
    """

1481
    if in_dynamic_mode():
1482
        return _C_ops.thresholded_relu(x, threshold)
1483 1484
    else:
        check_variable_and_dtype(
1485 1486 1487 1488
            x,
            'x',
            ['float16', 'uint16', 'float32', 'float64'],
            'thresholded_relu',
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
        )
        helper = LayerHelper('thresholded_relu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='thresholded_relu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'threshold': threshold},
        )
        return out
1499 1500


1501
def log_softmax(x, axis=-1, dtype=None, name=None):
1502
    r"""
1503 1504
    This operator implements the log_softmax layer. The calculation process is
    as follows:
1505 1506 1507

    .. math::

1508
        \begin{aligned}
1509 1510 1511
        log\_softmax[i, j] &= log(softmax(x)) \\
        &= log(\frac{\exp(X[i, j])}{\sum_j(\exp(X[i, j])})
        \end{aligned}
1512 1513

    Parameters:
1514 1515 1516 1517 1518 1519 1520
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
            type of the output tensor. If dtype is specified, ``x`` is casted
1521
            to ``dtype`` before the operation is performed. This is useful for
1522 1523 1524
            preventing data type overflows. Supported dtype: float32, float64.
            If ``dtype`` is None, the output Tensor has the same dtype as x.
            Default is None.
1525
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1526

1527
    Returns:
1528 1529
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1530 1531 1532 1533

    Examples:
        .. code-block:: python

1534 1535 1536
            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
1537 1538 1539 1540 1541 1542
            x = [[[-2.0, 3.0, -4.0, 5.0],
                  [3.0, -4.0, 5.0, -6.0],
                  [-7.0, -8.0, 8.0, 9.0]],
                 [[1.0, -2.0, -3.0, 4.0],
                  [-5.0, 6.0, 7.0, -8.0],
                  [6.0, 7.0, 8.0, 9.0]]]
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
            x = paddle.to_tensor(x)
            out1 = F.log_softmax(x)
            out2 = F.log_softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
    """
1555 1556 1557

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1558

1559
    if in_dynamic_mode():
1560
        if dtype is not None:
1561 1562
            x = _C_ops.cast(x, dtype)
        return _C_ops.log_softmax(x, axis)
1563 1564 1565
    else:
        if dtype is None:
            check_variable_and_dtype(
1566 1567 1568 1569
                x,
                'x',
                ['float16', 'uint16', 'float32', 'float64'],
                'log_softmax',
1570 1571 1572 1573 1574 1575 1576 1577 1578
            )
        else:
            check_dtype(
                dtype,
                'dtype',
                ['float32', 'float64'],
                'log_softmax',
                'If dtype is not None, it only support float32 or float64.',
            )
1579

1580 1581
        helper = LayerHelper("log_softmax", **locals())
        out_cast = x
H
hong 已提交
1582
        if dtype is not None:
1583 1584 1585 1586 1587 1588 1589
            out_cast = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': dtype},
            )
1590

1591
        out = helper.create_variable_for_type_inference(out_cast.dtype)
1592
        helper.append_op(
1593 1594 1595 1596
            type='log_softmax',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'axis': axis},
1597
        )
1598

1599
        return out
F
Feiyu Chan 已提交
1600 1601 1602 1603


def glu(x, axis=-1, name=None):
    r"""
1604
    The gated linear unit. The input is evenly splited into 2 parts along a
F
Feiyu Chan 已提交
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
    given axis. The first part is used as the content, and the second part is
    passed through a sigmoid function then used as the gate. The output is a
    elementwise multiplication of the content and the gate.

    .. math::

        \mathrm{GLU}(a, b) = a \otimes \sigma(b)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1615 1616 1617
        axis (int, optional): The axis along which split the input tensor. It
            should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` < 0, it works the same way as :math:`axis + D` .
F
Feiyu Chan 已提交
1618
            Default is -1.
1619
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1620

F
Feiyu Chan 已提交
1621
    Returns:
1622
        A Tensor with the same data type as x. The size of the given aixs is
F
Feiyu Chan 已提交
1623
        halved.
1624

F
Feiyu Chan 已提交
1625 1626
    Examples:
        .. code-block:: python
1627

F
Feiyu Chan 已提交
1628 1629
            import paddle
            from paddle.nn import functional as F
1630

F
Feiyu Chan 已提交
1631 1632
            x = paddle.to_tensor(
                [[-0.22014759, -1.76358426,  0.80566144,  0.04241343],
1633
                    [-1.94900405, -1.89956081,  0.17134808, -1.11280477]]
F
Feiyu Chan 已提交
1634
            )
1635 1636 1637 1638
            print(F.glu(x))
            # Tensor(shape=[2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[-0.15216254, -0.90048921],
            #         [-1.05778778, -0.46985325]])
1639

F
Feiyu Chan 已提交
1640
    """
1641 1642 1643
    check_variable_and_dtype(
        x, 'input', ['float16', 'float32', 'float64'], "glu"
    )
1644 1645 1646 1647 1648 1649 1650
    rank = len(x.shape)
    if not (-rank <= axis < rank):
        raise ValueError(
            "Expected value range of `axis` is [{}, {}), but received axis: {}".format(
                -rank, rank, axis
            )
        )
F
Feiyu Chan 已提交
1651 1652 1653 1654
    a, b = chunk(x, 2, axis=axis, name=name)
    gate = sigmoid(b, name=name)
    out = paddle.multiply(a, gate, name=name)
    return out
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679


def gumbel_softmax(x, temperature=1.0, hard=False, axis=-1, name=None):
    r"""
    Samples from the Gumbel-Softmax distribution and optionally discretizes.
    temperature is denoted by t. The calculation process is as follows:

    First, generate gumbel noise:

    .. math::

        G_i = -log(-log(U_i)), U_i \sim U(0,1)

    Second, add noise to ``x``:

    .. math::

        v = [x_1 + G_1,...,x_n + G_n]

    Finally, calculate gumbel_softmax and generate samples:

    .. math::
        gumbel\_softmax(v_i)=\frac{e^{v_i/t}}{\sum_{j=1}^n{e^{v_j/t}}},i=1,2,3...n

    Parameters:
1680 1681
        x (Tensor): An N-D Tensor, the first N - 1 dimensions index into a batch
            of independent distributions and the last dimension represents
1682
            a vector of probabilities with datatype float16, float32, float64.
1683 1684
        temperature (float, optional): non-negative scalar temperature.
            Default is 1.0.
1685 1686
        hard (bool, optional): if True, the returned samples will be discretized as
            one-hot vectors, but will be differentiated as if it is the soft sample
1687
            in autograd. Default is False.
1688
        axis (int, optional): The axis along will be calculated softmax value.
1689
            Default is -1.
1690
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1691

1692
    Returns:
1693 1694
        Sampled tensor of same shape as ``x`` from the Gumbel-Softmax distribution.
        If ``hard = True``, the returned samples will be one-hot, otherwise they will be
1695
        probability distributions that sum to 1 across ``axis``.
1696

1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            logits = paddle.randn([4, 6])
            temperature = 0.01
            gumbel_softmax = F.gumbel_softmax(logits, temperature)
            print(gumbel_softmax)
            # out's value is as follows:
            # [[0.00000001, 1.        , 0.00000000, 0.00000000, 0.00000006, 0.00000000],
            # [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 1.        ],
            # [0.00000062, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.99999940],
            # [0.00000000, 0.00000000, 0.00000000, 0.00001258, 0.99998736, 0.00000000]]
1712

1713
    """
Z
zhiboniu 已提交
1714
    if in_dynamic_mode():
1715
        return _C_ops.gumbel_softmax(x, temperature, hard, axis)
1716 1717

    helper = LayerHelper("gumbel_softmax", **locals())
1718 1719 1720
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'gumbel_softmax'
    )
1721
    out = helper.create_variable_for_type_inference(x.dtype)
1722 1723 1724 1725 1726 1727
    helper.append_op(
        type='gumbel_softmax',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'temperature': temperature, 'hard': hard, 'axis': axis},
    )
1728
    return out