use_concepts_cn.html 37.5 KB
Newer Older
1 2


3 4


5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>基本使用概念 &mdash; PaddlePaddle  文档</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
  

  
33

34 35 36 37 38 39
  
        <link rel="index" title="索引"
              href="../../genindex.html"/>
        <link rel="search" title="搜索" href="../../search.html"/>
    <link rel="top" title="PaddlePaddle  文档" href="../../index.html"/>
        <link rel="up" title="新手入门" href="../index_cn.html"/>
40 41
        <link rel="next" title="安装与编译" href="../../build_and_install/index_cn.html"/>
        <link rel="prev" title="快速开始" href="../quickstart_cn.html"/> 
42 43 44 45 46 47 48 49 50 51
<script>
var _hmt = _hmt || [];
(function() {
  var hm = document.createElement("script");
  hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
  var s = document.getElementsByTagName("script")[0]; 
  s.parentNode.insertBefore(hm, s);
})();
</script>

52 53 54 55 56 57 58 59

  
  <script src="../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

60 61 62 63 64 65 66 67 68 69 70 71 72
  <div class="wy-grid-for-nav">

    
    <nav data-toggle="wy-nav-shift" class="wy-nav-side">
      <div class="wy-side-scroll">
        <div class="wy-side-nav-search">
          

          
            <a href="../../index_cn.html" class="icon icon-home"> PaddlePaddle
          

          
73 74
          </a>

75 76 77 78 79 80
          
            
            
          

          
81 82 83 84 85 86
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
87
</div>
88 89

          
90 91 92 93
        </div>

        <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
          
94 95 96
<nav class="doc-menu-vertical" role="navigation">

<ul class="current">
97
<li class="toctree-l1 current"><a class="reference internal" href="../index_cn.html">新手入门</a><ul class="current">
98
<li class="toctree-l2"><a class="reference internal" href="../quickstart_cn.html">快速开始</a></li>
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
<li class="toctree-l2 current"><a class="current reference internal" href="#">基本使用概念</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../build_and_install/index_cn.html">安装与编译</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../build_and_install/pip_install_cn.html">使用pip安装</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../build_and_install/docker_install_cn.html">使用Docker安装运行</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../build_and_install/build_from_source_cn.html">从源码编译</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_cn.html">进阶使用</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../howto/cmd_parameter/index_cn.html">命令行参数设置</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/cmd_parameter/use_case_cn.html">使用案例</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/cmd_parameter/arguments_cn.html">参数概述</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/cmd_parameter/detail_introduction_cn.html">细节描述</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/cluster/index_cn.html">分布式训练</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/cluster/preparations_cn.html">环境准备</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/cluster/cmd_argument_cn.html">启动参数说明</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/cluster/multi_cluster/index_cn.html">在不同集群中运行</a><ul>
<li class="toctree-l4"><a class="reference internal" href="../../howto/cluster/multi_cluster/k8s_cn.html">Kubernetes单机训练</a></li>
<li class="toctree-l4"><a class="reference internal" href="../../howto/cluster/multi_cluster/k8s_distributed_cn.html">Kubernetes分布式训练</a></li>
<li class="toctree-l4"><a class="reference internal" href="../../howto/cluster/multi_cluster/openmpi_cn.html">在OpenMPI集群中启动训练</a></li>
<li class="toctree-l4"><a class="reference internal" href="../../howto/cluster/multi_cluster/fabric_cn.html">使用fabric启动集群训练</a></li>
<li class="toctree-l4"><a class="reference internal" href="../../howto/cluster/multi_cluster/k8s_aws_cn.html">Kubernetes on AWS</a></li>
124 125
</ul>
</li>
126 127
</ul>
</li>
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
<li class="toctree-l2"><a class="reference internal" href="../../howto/capi/index_cn.html">C-API预测库</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/capi/compile_paddle_lib_cn.html">安装与编译C-API预测库</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/capi/organization_of_the_inputs_cn.html">输入/输出数据组织</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/capi/workflow_of_capi_cn.html">C-API使用流程</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/rnn/index_cn.html">RNN模型</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/rnn/rnn_config_cn.html">RNN配置</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/rnn/recurrent_group_cn.html">Recurrent Group教程</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/optimization/gpu_profiling_cn.html">GPU性能调优</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../dev/index_cn.html">开发标准</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../dev/contribute_to_paddle_cn.html">如何贡献代码</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../dev/write_docs_cn.html">如何贡献文档</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../faq/index_cn.html">FAQ</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../faq/build_and_install/index_cn.html">编译安装与单元测试</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/model/index_cn.html">模型配置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/parameter/index_cn.html">参数设置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/local/index_cn.html">本地训练与预测</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/cluster/index_cn.html">集群训练与预测</a></li>
155 156
</ul>
</li>
157 158
</ul>

159 160
</nav>

161 162
        </div>
      </div>
163 164
    </nav>

165
    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
166

167 168 169 170 171
      
      <nav class="wy-nav-top" role="navigation" aria-label="top navigation">
        <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
        <a href="../../index_cn.html">PaddlePaddle</a>
      </nav>
172 173


174 175 176 177
      
      <div class="wy-nav-content">
        <div class="rst-content">
          
178

179
 
180 181 182 183 184



<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
185
    <li><a href="../../index_cn.html">Docs</a> &raquo;</li>
186
      
187
          <li><a href="../index_cn.html">新手入门</a> &raquo;</li>
188 189
      
    <li>基本使用概念</li>
190 191 192 193 194 195 196
      <li class="wy-breadcrumbs-aside">
        
          
            <a href="../../_sources/getstarted/concepts/use_concepts_cn.rst.txt" rel="nofollow"> View page source</a>
          
        
      </li>
197
  </ul>
198
  <hr/>
199 200 201 202 203 204 205 206
</div>
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="id1">
<h1>基本使用概念<a class="headerlink" href="#id1" title="永久链接至标题"></a></h1>
<p>PaddlePaddle是源于百度的一个深度学习平台。PaddlePaddle为深度学习研究人员提供了丰富的API,可以轻松地完成神经网络配置,模型训练等任务。
这里将介绍PaddlePaddle的基本使用概念,并且展示了如何利用PaddlePaddle来解决一个经典的线性回归问题。
207
在使用该文档之前,请参考 <a class="reference external" href="../../build_and_install/index_cn.html">安装文档</a> 完成PaddlePaddle的安装。</p>
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
<div class="section" id="id3">
<h2>配置网络<a class="headerlink" href="#id3" title="永久链接至标题"></a></h2>
<div class="section" id="paddlepaddle">
<h3>加载PaddlePaddle<a class="headerlink" href="#paddlepaddle" title="永久链接至标题"></a></h3>
<p>在进行网络配置之前,首先需要加载相应的Python库,并进行初始化操作。</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>import paddle.v2 as paddle
import numpy as np
paddle.init<span class="o">(</span><span class="nv">use_gpu</span><span class="o">=</span>False<span class="o">)</span>
</pre></div>
</div>
</div>
<div class="section" id="id4">
<h3>搭建神经网络<a class="headerlink" href="#id4" title="永久链接至标题"></a></h3>
<p>搭建神经网络就像使用积木搭建宝塔一样。在PaddlePaddle中,layer是我们的积木,而神经网络是我们要搭建的宝塔。我们使用不同的layer进行组合,来搭建神经网络。
宝塔的底端需要坚实的基座来支撑,同样,神经网络也需要一些特定的layer作为输入接口,来完成网络的训练。</p>
<p>例如,我们可以定义如下layer来描述神经网络的输入:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nv">x</span> <span class="o">=</span> paddle.layer.data<span class="o">(</span><span class="nv">name</span><span class="o">=</span><span class="s1">&#39;x&#39;</span>, <span class="nv">type</span><span class="o">=</span>paddle.data_type.dense_vector<span class="o">(</span><span class="m">2</span><span class="o">))</span>
<span class="nv">y</span> <span class="o">=</span> paddle.layer.data<span class="o">(</span><span class="nv">name</span><span class="o">=</span><span class="s1">&#39;y&#39;</span>, <span class="nv">type</span><span class="o">=</span>paddle.data_type.dense_vector<span class="o">(</span><span class="m">1</span><span class="o">))</span>
</pre></div>
</div>
<p>其中x表示输入数据是一个维度为2的稠密向量,y表示输入数据是一个维度为1的稠密向量。</p>
<p>PaddlePaddle支持不同类型的输入数据,主要包括四种类型,和三种序列模式。</p>
<p>四种数据类型:</p>
<ul class="simple">
<li>dense_vector:稠密的浮点数向量。</li>
<li>sparse_binary_vector:稀疏的01向量,即大部分值为0,但有值的地方必须为1。</li>
<li>sparse_float_vector:稀疏的向量,即大部分值为0,但有值的部分可以是任何浮点数。</li>
<li>integer:整数标签。</li>
</ul>
<p>三种序列模式:</p>
<ul class="simple">
<li>SequenceType.NO_SEQUENCE:不是一条序列</li>
<li>SequenceType.SEQUENCE:是一条时间序列</li>
<li>SequenceType.SUB_SEQUENCE: 是一条时间序列,且序列的每一个元素还是一个时间序列。</li>
</ul>
<p>不同的数据类型和序列模式返回的格式不同,列表如下:</p>
<table border="1" class="docutils">
<colgroup>
<col width="17%" />
<col width="17%" />
<col width="28%" />
<col width="38%" />
</colgroup>
<thead valign="bottom">
<tr class="row-odd"><th class="head">&#160;</th>
<th class="head">NO_SEQUENCE</th>
<th class="head">SEQUENCE</th>
<th class="head">SUB_SEQUENCE</th>
</tr>
</thead>
<tbody valign="top">
<tr class="row-even"><td>dense_vector</td>
<td>[f, f, ...]</td>
<td>[[f, ...], [f, ...], ...]</td>
<td>[[[f, ...], ...], [[f, ...], ...],...]</td>
</tr>
<tr class="row-odd"><td>sparse_binary_vector</td>
<td>[i, i, ...]</td>
<td>[[i, ...], [i, ...], ...]</td>
<td>[[[i, ...], ...], [[i, ...], ...],...]</td>
</tr>
<tr class="row-even"><td>sparse_float_vector</td>
<td>[(i,f), (i,f), ...]</td>
<td>[[(i,f), ...], [(i,f), ...], ...]</td>
<td>[[[(i,f), ...], ...], [[(i,f), ...], ...],...]</td>
</tr>
<tr class="row-odd"><td>integer_value</td>
<td>i</td>
<td>[i, i, ...]</td>
<td>[[i, ...], [i, ...], ...]</td>
</tr>
</tbody>
</table>
<p>其中,f代表一个浮点数,i代表一个整数。</p>
<p>注意:对sparse_binary_vector和sparse_float_vector,PaddlePaddle存的是有值位置的索引。例如,</p>
<ul class="simple">
<li>对一个5维非序列的稀疏01向量 <code class="docutils literal"><span class="pre">[0,</span> <span class="pre">1,</span> <span class="pre">1,</span> <span class="pre">0,</span> <span class="pre">0]</span></code> ,类型是sparse_binary_vector,返回的是 <code class="docutils literal"><span class="pre">[1,</span> <span class="pre">2]</span></code></li>
<li>对一个5维非序列的稀疏浮点向量 <code class="docutils literal"><span class="pre">[0,</span> <span class="pre">0.5,</span> <span class="pre">0.7,</span> <span class="pre">0,</span> <span class="pre">0]</span></code> ,类型是sparse_float_vector,返回的是 <code class="docutils literal"><span class="pre">[(1,</span> <span class="pre">0.5),</span> <span class="pre">(2,</span> <span class="pre">0.7)]</span></code></li>
</ul>
<p>在定义输入layer之后,我们可以使用其他layer进行组合。在组合时,需要指定layer的输入来源。</p>
<p>例如,我们可以定义如下的layer组合:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nv">y_predict</span> <span class="o">=</span> paddle.layer.fc<span class="o">(</span><span class="nv">input</span><span class="o">=</span>x, <span class="nv">size</span><span class="o">=</span><span class="m">1</span>, <span class="nv">act</span><span class="o">=</span>paddle.activation.Linear<span class="o">())</span>
290
<span class="nv">cost</span> <span class="o">=</span> paddle.layer.square_error_cost<span class="o">(</span><span class="nv">input</span><span class="o">=</span>y_predict, <span class="nv">label</span><span class="o">=</span>y<span class="o">)</span>
291 292
</pre></div>
</div>
293
<p>其中,x与y为之前描述的输入层;而y_predict是接收x作为输入,接上一个全连接层;cost接收y_predict与y作为输入,接上平方误差层。</p>
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
<p>最后一层cost中记录了神经网络的所有拓扑结构,通过组合不同的layer,我们即可完成神经网络的搭建。</p>
</div>
</div>
<div class="section" id="id5">
<h2>训练模型<a class="headerlink" href="#id5" title="永久链接至标题"></a></h2>
<p>在完成神经网络的搭建之后,我们首先需要根据神经网络结构来创建所需要优化的parameters,并创建optimizer。
之后,我们可以创建trainer来对网络进行训练。</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nv">parameters</span> <span class="o">=</span> paddle.parameters.create<span class="o">(</span>cost<span class="o">)</span>
<span class="nv">optimizer</span> <span class="o">=</span> paddle.optimizer.Momentum<span class="o">(</span><span class="nv">momentum</span><span class="o">=</span><span class="m">0</span><span class="o">)</span>
<span class="nv">trainer</span> <span class="o">=</span> paddle.trainer.SGD<span class="o">(</span><span class="nv">cost</span><span class="o">=</span>cost,
                             <span class="nv">parameters</span><span class="o">=</span>parameters,
                             <span class="nv">update_equation</span><span class="o">=</span>optimizer<span class="o">)</span>
</pre></div>
</div>
<p>其中,trainer接收三个参数,包括神经网络拓扑结构、神经网络参数以及迭代方程。</p>
<p>在搭建神经网络的过程中,我们仅仅对神经网络的输入进行了描述。而trainer需要读取训练数据进行训练,PaddlePaddle中通过reader来加载数据。</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="c1"># define training dataset reader</span>
def train_reader<span class="o">()</span>:
    <span class="nv">train_x</span> <span class="o">=</span> np.array<span class="o">([[</span><span class="m">1</span>, <span class="m">1</span><span class="o">]</span>, <span class="o">[</span><span class="m">1</span>, <span class="m">2</span><span class="o">]</span>, <span class="o">[</span><span class="m">3</span>, <span class="m">4</span><span class="o">]</span>, <span class="o">[</span><span class="m">5</span>, <span class="m">2</span><span class="o">]])</span>
313
    <span class="nv">train_y</span> <span class="o">=</span> np.array<span class="o">([[</span>-2<span class="o">]</span>, <span class="o">[</span>-3<span class="o">]</span>, <span class="o">[</span>-7<span class="o">]</span>, <span class="o">[</span>-7<span class="o">]])</span>
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
    def reader<span class="o">()</span>:
        <span class="k">for</span> i in xrange<span class="o">(</span>train_y.shape<span class="o">[</span><span class="m">0</span><span class="o">])</span>:
            yield train_x<span class="o">[</span>i<span class="o">]</span>, train_y<span class="o">[</span>i<span class="o">]</span>
    <span class="k">return</span> reader
</pre></div>
</div>
<p>最终我们可以调用trainer的train方法启动训练:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="c1"># define feeding map</span>
<span class="nv">feeding</span> <span class="o">=</span> <span class="o">{</span><span class="s1">&#39;x&#39;</span>: <span class="m">0</span>, <span class="s1">&#39;y&#39;</span>: <span class="m">1</span><span class="o">}</span>

<span class="c1"># event_handler to print training info</span>
def event_handler<span class="o">(</span>event<span class="o">)</span>:
    <span class="k">if</span> isinstance<span class="o">(</span>event, paddle.event.EndIteration<span class="o">)</span>:
        <span class="k">if</span> event.batch_id % <span class="nv">1</span> <span class="o">==</span> <span class="m">0</span>:
            print <span class="s2">&quot;Pass %d, Batch %d, Cost %f&quot;</span> % <span class="o">(</span>
                event.pass_id, event.batch_id, event.cost<span class="o">)</span>
<span class="c1"># training</span>
trainer.train<span class="o">(</span>
    <span class="nv">reader</span><span class="o">=</span>paddle.batch<span class="o">(</span>train_reader<span class="o">()</span>, <span class="nv">batch_size</span><span class="o">=</span><span class="m">1</span><span class="o">)</span>,
    <span class="nv">feeding</span><span class="o">=</span>feeding,
    <span class="nv">event_handler</span><span class="o">=</span>event_handler,
    <span class="nv">num_passes</span><span class="o">=</span><span class="m">100</span><span class="o">)</span>
</pre></div>
</div>
<p>关于PaddlePaddle的更多使用方法请参考 <a class="reference external" href="../../howto/index_cn.html">进阶指南</a></p>
</div>
<div class="section" id="id7">
<h2>线性回归完整示例<a class="headerlink" href="#id7" title="永久链接至标题"></a></h2>
<p>下面给出在三维空间中使用线性回归拟合一条直线的例子:</p>
<div class="highlight-default"><table class="highlighttable"><tr><td class="linenos"><div class="linenodiv"><pre> 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
394 395 396 397 398
52
53
54
55
56
399 400 401 402 403 404 405 406 407 408 409 410 411
57
58
59
60
61
62
63
64
65
66
67
68
69
412
70
413
71</pre></div></td><td class="code"><div class="highlight"><pre><span></span><span class="c1">#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.</span>
414
<span class="c1">#</span>
415 416 417
<span class="c1"># Licensed under the Apache License, Version 2.0 (the &quot;License&quot;);</span>
<span class="c1"># you may not use this file except in compliance with the License.</span>
<span class="c1"># You may obtain a copy of the License at</span>
418
<span class="c1">#</span>
419
<span class="c1">#     http://www.apache.org/licenses/LICENSE-2.0</span>
420
<span class="c1">#</span>
421 422 423 424 425 426
<span class="c1"># Unless required by applicable law or agreed to in writing, software</span>
<span class="c1"># distributed under the License is distributed on an &quot;AS IS&quot; BASIS,</span>
<span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span>
<span class="c1"># See the License for the specific language governing permissions and</span>
<span class="c1"># limitations under the License.</span>

427
<span class="kn">import</span> <span class="nn">paddle.v2</span> <span class="k">as</span> <span class="nn">paddle</span>
428 429 430 431 432 433 434 435 436
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>

<span class="c1"># init paddle</span>
<span class="n">paddle</span><span class="o">.</span><span class="n">init</span><span class="p">(</span><span class="n">use_gpu</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>

<span class="c1"># network config</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">layer</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;x&#39;</span><span class="p">,</span> <span class="nb">type</span><span class="o">=</span><span class="n">paddle</span><span class="o">.</span><span class="n">data_type</span><span class="o">.</span><span class="n">dense_vector</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span>
<span class="n">y_predict</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">layer</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">x</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">act</span><span class="o">=</span><span class="n">paddle</span><span class="o">.</span><span class="n">activation</span><span class="o">.</span><span class="n">Linear</span><span class="p">())</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">layer</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;y&#39;</span><span class="p">,</span> <span class="nb">type</span><span class="o">=</span><span class="n">paddle</span><span class="o">.</span><span class="n">data_type</span><span class="o">.</span><span class="n">dense_vector</span><span class="p">(</span><span class="mi">1</span><span class="p">))</span>
437
<span class="n">cost</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">layer</span><span class="o">.</span><span class="n">square_error_cost</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">y_predict</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">y</span><span class="p">)</span>
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454

<span class="c1"># create parameters</span>
<span class="n">parameters</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">parameters</span><span class="o">.</span><span class="n">create</span><span class="p">(</span><span class="n">cost</span><span class="p">)</span>
<span class="c1"># create optimizer</span>
<span class="n">optimizer</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">Momentum</span><span class="p">(</span><span class="n">momentum</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="c1"># create trainer</span>
<span class="n">trainer</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">trainer</span><span class="o">.</span><span class="n">SGD</span><span class="p">(</span><span class="n">cost</span><span class="o">=</span><span class="n">cost</span><span class="p">,</span>
                             <span class="n">parameters</span><span class="o">=</span><span class="n">parameters</span><span class="p">,</span>
                             <span class="n">update_equation</span><span class="o">=</span><span class="n">optimizer</span><span class="p">)</span>


<span class="c1"># event_handler to print training info</span>
<span class="k">def</span> <span class="nf">event_handler</span><span class="p">(</span><span class="n">event</span><span class="p">):</span>
    <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">event</span><span class="p">,</span> <span class="n">paddle</span><span class="o">.</span><span class="n">event</span><span class="o">.</span><span class="n">EndIteration</span><span class="p">):</span>
        <span class="k">if</span> <span class="n">event</span><span class="o">.</span><span class="n">batch_id</span> <span class="o">%</span> <span class="mi">1</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
            <span class="nb">print</span> <span class="s2">&quot;Pass </span><span class="si">%d</span><span class="s2">, Batch </span><span class="si">%d</span><span class="s2">, Cost </span><span class="si">%f</span><span class="s2">&quot;</span> <span class="o">%</span> <span class="p">(</span><span class="n">event</span><span class="o">.</span><span class="n">pass_id</span><span class="p">,</span> <span class="n">event</span><span class="o">.</span><span class="n">batch_id</span><span class="p">,</span>
                                                  <span class="n">event</span><span class="o">.</span><span class="n">cost</span><span class="p">)</span>
455 456 457 458 459
    <span class="c1"># product model every 10 pass</span>
    <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">event</span><span class="p">,</span> <span class="n">paddle</span><span class="o">.</span><span class="n">event</span><span class="o">.</span><span class="n">EndPass</span><span class="p">):</span>
        <span class="k">if</span> <span class="n">event</span><span class="o">.</span><span class="n">pass_id</span> <span class="o">%</span> <span class="mi">10</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
            <span class="k">with</span> <span class="nb">open</span><span class="p">(</span><span class="s1">&#39;params_pass_</span><span class="si">%d</span><span class="s1">.tar&#39;</span> <span class="o">%</span> <span class="n">event</span><span class="o">.</span><span class="n">pass_id</span><span class="p">,</span> <span class="s1">&#39;w&#39;</span><span class="p">)</span> <span class="k">as</span> <span class="n">f</span><span class="p">:</span>
                <span class="n">trainer</span><span class="o">.</span><span class="n">save_parameter_to_tar</span><span class="p">(</span><span class="n">f</span><span class="p">)</span>
460 461 462 463 464


<span class="c1"># define training dataset reader</span>
<span class="k">def</span> <span class="nf">train_reader</span><span class="p">():</span>
    <span class="n">train_x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">],</span> <span class="p">[</span><span class="mi">5</span><span class="p">,</span> <span class="mi">2</span><span class="p">]])</span>
465
    <span class="n">train_y</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([[</span><span class="o">-</span><span class="mi">2</span><span class="p">],</span> <span class="p">[</span><span class="o">-</span><span class="mi">3</span><span class="p">],</span> <span class="p">[</span><span class="o">-</span><span class="mi">7</span><span class="p">],</span> <span class="p">[</span><span class="o">-</span><span class="mi">7</span><span class="p">]])</span>
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485

    <span class="k">def</span> <span class="nf">reader</span><span class="p">():</span>
        <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">xrange</span><span class="p">(</span><span class="n">train_y</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]):</span>
            <span class="k">yield</span> <span class="n">train_x</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">train_y</span><span class="p">[</span><span class="n">i</span><span class="p">]</span>

    <span class="k">return</span> <span class="n">reader</span>


<span class="c1"># define feeding map</span>
<span class="n">feeding</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;x&#39;</span><span class="p">:</span> <span class="mi">0</span><span class="p">,</span> <span class="s1">&#39;y&#39;</span><span class="p">:</span> <span class="mi">1</span><span class="p">}</span>

<span class="c1"># training</span>
<span class="n">trainer</span><span class="o">.</span><span class="n">train</span><span class="p">(</span>
    <span class="n">reader</span><span class="o">=</span><span class="n">paddle</span><span class="o">.</span><span class="n">batch</span><span class="p">(</span>
        <span class="n">train_reader</span><span class="p">(),</span> <span class="n">batch_size</span><span class="o">=</span><span class="mi">1</span><span class="p">),</span>
    <span class="n">feeding</span><span class="o">=</span><span class="n">feeding</span><span class="p">,</span>
    <span class="n">event_handler</span><span class="o">=</span><span class="n">event_handler</span><span class="p">,</span>
    <span class="n">num_passes</span><span class="o">=</span><span class="mi">100</span><span class="p">)</span>
</pre></div>
</td></tr></table></div>
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
<p>使用以上训练好的模型进行预测,取其中一个模型params_pass_90.tar,输入需要预测的向量组,然后打印输出:</p>
<div class="highlight-default"><table class="highlighttable"><tr><td class="linenos"><div class="linenodiv"><pre> 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
504 505 506 507 508 509 510 511 512 513 514 515 516
18
19
20
21
22
23
24
25
26
27
28
29
30
517
31
518
32</pre></div></td><td class="code"><div class="highlight"><pre><span></span><span class="c1">#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.</span>
519
<span class="c1">#</span>
520 521 522
<span class="c1"># Licensed under the Apache License, Version 2.0 (the &quot;License&quot;);</span>
<span class="c1"># you may not use this file except in compliance with the License.</span>
<span class="c1"># You may obtain a copy of the License at</span>
523
<span class="c1">#</span>
524
<span class="c1">#     http://www.apache.org/licenses/LICENSE-2.0</span>
525
<span class="c1">#</span>
526 527 528 529 530 531
<span class="c1"># Unless required by applicable law or agreed to in writing, software</span>
<span class="c1"># distributed under the License is distributed on an &quot;AS IS&quot; BASIS,</span>
<span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span>
<span class="c1"># See the License for the specific language governing permissions and</span>
<span class="c1"># limitations under the License.</span>

532
<span class="kn">import</span> <span class="nn">paddle.v2</span> <span class="k">as</span> <span class="nn">paddle</span>
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>

<span class="n">paddle</span><span class="o">.</span><span class="n">init</span><span class="p">(</span><span class="n">use_gpu</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">layer</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;x&#39;</span><span class="p">,</span> <span class="nb">type</span><span class="o">=</span><span class="n">paddle</span><span class="o">.</span><span class="n">data_type</span><span class="o">.</span><span class="n">dense_vector</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span>
<span class="n">y_predict</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">layer</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">x</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">act</span><span class="o">=</span><span class="n">paddle</span><span class="o">.</span><span class="n">activation</span><span class="o">.</span><span class="n">Linear</span><span class="p">())</span>

<span class="c1"># loading the model which generated by training</span>
<span class="k">with</span> <span class="nb">open</span><span class="p">(</span><span class="s1">&#39;params_pass_90.tar&#39;</span><span class="p">,</span> <span class="s1">&#39;r&#39;</span><span class="p">)</span> <span class="k">as</span> <span class="n">f</span><span class="p">:</span>
    <span class="n">parameters</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">parameters</span><span class="o">.</span><span class="n">Parameters</span><span class="o">.</span><span class="n">from_tar</span><span class="p">(</span><span class="n">f</span><span class="p">)</span>

<span class="c1"># Input multiple sets of data,Output the infer result in a array.</span>
<span class="n">i</span> <span class="o">=</span> <span class="p">[[[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">]],</span> <span class="p">[[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">]],</span> <span class="p">[[</span><span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">]]]</span>
<span class="nb">print</span> <span class="n">paddle</span><span class="o">.</span><span class="n">infer</span><span class="p">(</span><span class="n">output_layer</span><span class="o">=</span><span class="n">y_predict</span><span class="p">,</span> <span class="n">parameters</span><span class="o">=</span><span class="n">parameters</span><span class="p">,</span> <span class="nb">input</span><span class="o">=</span><span class="n">i</span><span class="p">)</span>
<span class="c1"># Will print:</span>
<span class="c1"># [[ -3.24491572]</span>
<span class="c1">#  [ -6.94668722]</span>
<span class="c1">#  [-10.64845848]]</span>
</pre></div>
</td></tr></table></div>
552 553 554 555 556 557 558 559 560 561 562
<p>有关线性回归的实际应用,可以参考PaddlePaddle book的 <a class="reference external" href="http://book.paddlepaddle.org/index.html">第一章节</a></p>
</div>
</div>


           </div>
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
563
        <a href="../../build_and_install/index_cn.html" class="btn btn-neutral float-right" title="安装与编译" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
564 565
      
      
566
        <a href="../quickstart_cn.html" class="btn btn-neutral" title="快速开始" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
600
            HAS_SOURCE:  true
601 602 603 604 605 606 607
        };
    </script>
      <script type="text/javascript" src="../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../_static/doctools.js"></script>
      <script type="text/javascript" src="../../_static/translations.js"></script>
      <script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
608

609 610 611 612 613 614
  

  
  
    <script type="text/javascript" src="../../_static/js/theme.js"></script>
  
615

616
  
617 618 619 620 621 622 623
  
  <script type="text/javascript">
      jQuery(function () {
          SphinxRtdTheme.StickyNav.enable();
      });
  </script>
   
624 625 626

</body>
</html>