bipartite_match_op.cc 11.7 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15 16
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
17 18 19 20 21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

class BipartiteMatchOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
29 30 31 32 33 34 35 36 37 38 39 40
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("DistMat"), true,
        platform::errors::InvalidArgument(
            "Input(DistMat) of BipartiteMatch should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasOutput("ColToRowMatchIndices"), true,
                      platform::errors::InvalidArgument(
                          "Output(ColToRowMatchIndices) of BipartiteMatch "
                          "should not be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("ColToRowMatchDist"), true,
        platform::errors::InvalidArgument(
            "Output(ColToRowMatchDist) of BipartiteMatch should not be null."));
41

D
dangqingqing 已提交
42
    auto dims = ctx->GetInputDim("DistMat");
43 44 45
    PADDLE_ENFORCE_EQ(dims.size(), 2,
                      platform::errors::InvalidArgument(
                          "The rank of Input(DistMat) must be 2."));
46 47

    ctx->SetOutputDim("ColToRowMatchIndices", dims);
D
dangqingqing 已提交
48
    ctx->SetOutputDim("ColToRowMatchDist", dims);
49 50 51 52 53
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
54 55 56
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "DistMat"),
        platform::CPUPlace());
57 58 59
  }
};

60 61 62 63 64 65
template <class T>
bool DistPairDescend(std::tuple<int, int, T> pair1,
                     std::tuple<int, int, T> pair2) {
  return std::get<2>(pair1) > std::get<2>(pair2);
}

66 67 68 69
template <typename T>
class BipartiteMatchKernel : public framework::OpKernel<T> {
 public:
  // The match_indices must be initialized to -1 at first.
70 71 72
  // The match_dist must be initialized to 0 at first.
  void BipartiteMatch(const Tensor& dist, int* match_indices,
                      T* match_dist) const {
73 74 75
    PADDLE_ENFORCE_EQ(
        dist.dims().size(), 2,
        platform::errors::InvalidArgument("The rank of dist must be 2."));
76 77 78
    int64_t row = dist.dims()[0];
    int64_t col = dist.dims()[1];
    auto* dist_data = dist.data<T>();
79 80 81 82 83 84 85
    // Test result: When row==130 the speed of these two methods almost the same
    if (row >= 130) {
      std::vector<std::tuple<int, int, T>> match_pair;

      for (int64_t i = 0; i < row; ++i) {
        for (int64_t j = 0; j < col; ++j) {
          match_pair.push_back(std::make_tuple(i, j, dist_data[i * col + j]));
86
        }
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
      }
      std::sort(match_pair.begin(), match_pair.end(), DistPairDescend<T>);
      std::vector<int> row_indices(row, -1);

      int64_t idx = 0;
      for (int64_t k = 0; k < row * col; ++k) {
        int64_t i = std::get<0>(match_pair[k]);
        int64_t j = std::get<1>(match_pair[k]);
        T dist = std::get<2>(match_pair[k]);

        if (idx >= row) {
          break;
        }
        if (match_indices[j] == -1 && row_indices[i] == -1 && dist > 0) {
          match_indices[j] = i;
          row_indices[i] = j;
          match_dist[j] = dist;
          idx += 1;
        }
      }
    } else {
      constexpr T kEPS = static_cast<T>(1e-6);
      std::vector<int> row_pool;
      for (int i = 0; i < row; ++i) {
        row_pool.push_back(i);
      }
      while (row_pool.size() > 0) {
        int max_idx = -1;
        int max_row_idx = -1;
        T max_dist = -1;
        for (int64_t j = 0; j < col; ++j) {
          if (match_indices[j] != -1) {
119 120
            continue;
          }
121 122 123 124 125 126 127 128 129 130 131
          for (size_t k = 0; k < row_pool.size(); ++k) {
            int m = row_pool[k];
            // distance is 0 between m-th row and j-th column
            if (dist_data[m * col + j] < kEPS) {
              continue;
            }
            if (dist_data[m * col + j] > max_dist) {
              max_idx = j;
              max_row_idx = m;
              max_dist = dist_data[m * col + j];
            }
132 133
          }
        }
134 135 136 137
        if (max_idx == -1) {
          // Cannot find good match.
          break;
        } else {
138 139 140 141 142
          PADDLE_ENFORCE_EQ(
              match_indices[max_idx], -1,
              platform::errors::InvalidArgument(
                  "The match_indices must be initialized to -1 at [%d].",
                  max_idx));
143 144 145 146 147 148
          match_indices[max_idx] = max_row_idx;
          match_dist[max_idx] = max_dist;
          // Erase the row index.
          row_pool.erase(
              std::find(row_pool.begin(), row_pool.end(), max_row_idx));
        }
149 150 151 152
      }
    }
  }

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
  void ArgMaxMatch(const Tensor& dist, int* match_indices, T* match_dist,
                   T overlap_threshold) const {
    constexpr T kEPS = static_cast<T>(1e-6);
    int64_t row = dist.dims()[0];
    int64_t col = dist.dims()[1];
    auto* dist_data = dist.data<T>();
    for (int64_t j = 0; j < col; ++j) {
      if (match_indices[j] != -1) {
        // the j-th column has been matched to one entity.
        continue;
      }
      int max_row_idx = -1;
      T max_dist = -1;
      for (int i = 0; i < row; ++i) {
        T dist = dist_data[i * col + j];
        if (dist < kEPS) {
          // distance is 0 between m-th row and j-th column
          continue;
        }
        if (dist >= overlap_threshold && dist > max_dist) {
          max_row_idx = i;
          max_dist = dist;
        }
      }
      if (max_row_idx != -1) {
178 179 180 181
        PADDLE_ENFORCE_EQ(
            match_indices[j], -1,
            platform::errors::InvalidArgument(
                "The match_indices must be initialized to -1 at [%d].", j));
182 183 184 185 186 187
        match_indices[j] = max_row_idx;
        match_dist[j] = max_dist;
      }
    }
  }

188
  void Compute(const framework::ExecutionContext& context) const override {
D
dangqingqing 已提交
189
    auto* dist_mat = context.Input<LoDTensor>("DistMat");
190
    auto* match_indices = context.Output<Tensor>("ColToRowMatchIndices");
D
dangqingqing 已提交
191
    auto* match_dist = context.Output<Tensor>("ColToRowMatchDist");
192 193 194

    auto& dev_ctx = context.device_context<platform::CPUDeviceContext>();

195
    auto col = dist_mat->dims()[1];
196

197
    int64_t n = dist_mat->lod().size() == 0UL
198
                    ? 1
199 200
                    : static_cast<int64_t>(dist_mat->lod().back().size() - 1);
    if (dist_mat->lod().size()) {
201 202 203
      PADDLE_ENFORCE_EQ(
          dist_mat->lod().size(), 1UL,
          platform::errors::InvalidArgument("Only support 1 level of LoD."));
204
    }
205
    match_indices->mutable_data<int>({n, col}, context.GetPlace());
206
    match_dist->mutable_data<T>({n, col}, context.GetPlace());
207 208 209 210

    math::SetConstant<platform::CPUDeviceContext, int> iset;
    iset(dev_ctx, match_indices, static_cast<int>(-1));
    math::SetConstant<platform::CPUDeviceContext, T> tset;
211
    tset(dev_ctx, match_dist, static_cast<T>(0));
212 213

    int* indices = match_indices->data<int>();
214
    T* dist = match_dist->data<T>();
215 216
    auto type = context.Attr<std::string>("match_type");
    auto threshold = context.Attr<float>("dist_threshold");
217
    if (n == 1) {
218
      BipartiteMatch(*dist_mat, indices, dist);
219 220 221
      if (type == "per_prediction") {
        ArgMaxMatch(*dist_mat, indices, dist, threshold);
      }
222
    } else {
223
      auto lod = dist_mat->lod().back();
224
      for (size_t i = 0; i < lod.size() - 1; ++i) {
225 226
        Tensor one_ins = dist_mat->Slice(lod[i], lod[i + 1]);
        BipartiteMatch(one_ins, indices + i * col, dist + i * col);
227 228 229
        if (type == "per_prediction") {
          ArgMaxMatch(one_ins, indices + i * col, dist + i * col, threshold);
        }
230 231 232 233 234 235 236
      }
    }
  }
};

class BipartiteMatchOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
237
  void Make() override {
238
    AddInput(
D
dangqingqing 已提交
239
        "DistMat",
240 241 242 243
        "(LoDTensor or Tensor) this input is a 2-D LoDTensor with shape "
        "[K, M]. It is pair-wise distance matrix between the entities "
        "represented by each row and each column. For example, assumed one "
        "entity is A with shape [K], another entity is B with shape [M]. The "
D
dangqingqing 已提交
244
        "DistMat[i][j] is the distance between A[i] and B[j]. The bigger "
245
        "the distance is, the better macthing the pairs are. Please note, "
246 247 248
        "This tensor can contain LoD information to represent a batch of "
        "inputs. One instance of this batch can contain different numbers of "
        "entities.");
249 250
    AddAttr<std::string>(
        "match_type",
翟飞跃 已提交
251
        "(string, default: per_prediction) "
252
        "The type of matching method, should be 'bipartite' or "
翟飞跃 已提交
253
        "'per_prediction', 'bipartite' by default.")
254 255 256 257
        .SetDefault("bipartite")
        .InEnum({"bipartite", "per_prediction"});
    AddAttr<float>(
        "dist_threshold",
翟飞跃 已提交
258
        "(float, default: 0.5) "
259 260 261
        "If `match_type` is 'per_prediction', this threshold is to determine "
        "the extra matching bboxes based on the maximum distance.")
        .SetDefault(0.5);
262 263 264 265 266
    AddOutput("ColToRowMatchIndices",
              "(Tensor) A 2-D Tensor with shape [N, M] in int type. "
              "N is the batch size. If ColToRowMatchIndices[i][j] is -1, it "
              "means B[j] does not match any entity in i-th instance. "
              "Otherwise, it means B[j] is matched to row "
267 268
              "ColToRowMatchIndices[i][j] in i-th instance. The row number of "
              "i-th instance is saved in ColToRowMatchIndices[i][j].");
D
dangqingqing 已提交
269
    AddOutput("ColToRowMatchDist",
270 271
              "(Tensor) A 2-D Tensor with shape [N, M] in float type. "
              "N is batch size. If ColToRowMatchIndices[i][j] is -1, "
D
dangqingqing 已提交
272
              "ColToRowMatchDist[i][j] is also -1.0. Otherwise, assumed "
273
              "ColToRowMatchIndices[i][j] = d, and the row offsets of each "
274
              "instance are called LoD. Then "
D
dangqingqing 已提交
275
              "ColToRowMatchDist[i][j] = DistMat[d+LoD[i]][j]");
276 277
    AddComment(R"DOC(
This operator is a greedy bipartite matching algorithm, which is used to
278 279 280 281 282
obtain the matching with the maximum distance based on the input
distance matrix. For input 2D matrix, the bipartite matching algorithm can
find the matched column for each row, also can find the matched row for
each column. And this operator only calculate matched indices from column
to row. For each instance, the number of matched indices is the number of
283
of columns of the input distance matrix.
284 285

There are two outputs to save matched indices and distance.
286
A simple description, this algorithm matched the best (maximum distance)
287 288 289 290
row entity to the column entity and the matched indices are not duplicated
in each row of ColToRowMatchIndices. If the column entity is not matched
any row entity, set -1 in ColToRowMatchIndices.

D
dangqingqing 已提交
291
Please note that the input DistMat can be LoDTensor (with LoD) or Tensor.
292 293 294 295 296 297 298 299 300 301 302
If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
If Tensor, the height of ColToRowMatchIndices is 1.

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
303 304 305 306
REGISTER_OPERATOR(
    bipartite_match, ops::BipartiteMatchOp, ops::BipartiteMatchOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
307 308
REGISTER_OP_CPU_KERNEL(bipartite_match, ops::BipartiteMatchKernel<float>,
                       ops::BipartiteMatchKernel<double>);