device_worker.py 13.8 KB
Newer Older
1
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
"""Defination of device workers."""
15

16 17 18
__all__ = [
    'DeviceWorker', 'Hogwild', 'DownpourSGD', 'Section', 'DownpourSGDOPT'
]
19

20 21

class DeviceWorker(object):
X
xjqbest 已提交
22
    """
23
    DeviceWorker is an abstract class, which generates worker desc.
24 25
    This class is an inner class that we do computation logics within
    the implementation. For example, execution of a program or a graph.
X
xjqbest 已提交
26
    """
27

28
    def __init__(self):
29
        """Init."""
D
dongdaxiang 已提交
30 31
        self._program = None
        self._infer = None
32

33 34 35 36 37 38 39
    def _set_infer(self, infer=False):
        """
        set inference flag for current device worker
        
        Args:
            infer(bool): whether to do inference
        """
D
dongdaxiang 已提交
40
        self._infer = infer
D
dongdaxiang 已提交
41

42
    def _set_fleet_desc(self, fleet_desc):
X
xjqbest 已提交
43 44 45 46 47 48
        """
        Set fleet desc.

        Args:
            fleet_desc(PSParameter): pslib.PSParameter object
        """
D
dongdaxiang 已提交
49
        self._fleet_desc = fleet_desc
D
dongdaxiang 已提交
50

51
    def _set_program(self, program):
X
xjqbest 已提交
52 53 54 55 56 57
        """
        Set program.

        Args:
            program(Program): a Program object
        """
D
dongdaxiang 已提交
58
        self._program = program
59

60
    def _gen_worker_desc(self, trainer_desc):
X
xjqbest 已提交
61 62 63 64 65 66 67 68 69
        """
        Generator worker desc.

        Args:
            trainer_desc(TrainerDesc): a TrainerDesc object
        """
        raise NotImplementedError(
            "DeviceWorker does not implement gen_worker_desc, "
            "please use Hogwild or DownpourSGD, etc.")
70 71 72


class Hogwild(DeviceWorker):
X
xjqbest 已提交
73 74 75 76
    """
    Hogwild is a kind of SGD algorithm.

    """
77

78
    def __init__(self):
79
        """Init."""
80 81
        super(Hogwild, self).__init__()

82
    def _gen_worker_desc(self, trainer_desc):
X
xjqbest 已提交
83 84 85 86 87 88
        """
        Generator worker desc, which device worker is HogwildWorker.

        Args:
            trainer_desc(TrainerDesc): a TrainerDesc object
        """
89
        trainer_desc.device_worker_name = "HogwildWorker"
D
dongdaxiang 已提交
90
        if self._infer:
91 92
            # just ignore feed op for inference model
            trainer_desc.hogwild_param.skip_ops.extend(["feed"])
93 94


D
dongdaxiang 已提交
95
class DownpourSGD(DeviceWorker):
X
xjqbest 已提交
96 97 98
    """
    DownpourSGD is a kind of distributed SGD algorithm.
    """
99

100
    def __init__(self):
X
xjqbest 已提交
101 102
        """
        Init.
103
        initialize downpourSGD device worker
X
xjqbest 已提交
104
        """
D
dongdaxiang 已提交
105
        super(DownpourSGD, self).__init__()
106

107
    def _gen_worker_desc(self, trainer_desc):
X
xjqbest 已提交
108 109 110 111 112 113
        """
        Generator worker desc, which device worker is DownpourWorker.

        Args:
            trainer_desc(TrainerDesc): a TrainerDesc object
        """
X
fix bug  
xjqbest 已提交
114
        dense_table_set = set()
D
dongdaxiang 已提交
115 116
        program_id = str(id(self._program))
        if self._program == None:
D
dongdaxiang 已提交
117
            print("program of current device worker is not configured")
118
            exit(-1)
D
dongdaxiang 已提交
119
        opt_info = self._program._fleet_opt
D
dongdaxiang 已提交
120
        program_configs = opt_info["program_configs"]
121
        downpour = trainer_desc.downpour_param
D
dongdaxiang 已提交
122

D
dongdaxiang 已提交
123 124
        for pid in program_configs:
            if pid == program_id:
D
dongdaxiang 已提交
125 126 127 128 129 130
                pc = downpour.program_config.add()
                pc.program_id = program_id
                for i in program_configs[program_id]["push_sparse"]:
                    pc.push_sparse_table_id.extend([i])
                for i in program_configs[program_id]["push_dense"]:
                    pc.push_dense_table_id.extend([i])
X
xjqbest 已提交
131
                    dense_table_set.add(i)
D
dongdaxiang 已提交
132 133 134 135
                for i in program_configs[program_id]["pull_sparse"]:
                    pc.pull_sparse_table_id.extend([i])
                for i in program_configs[program_id]["pull_dense"]:
                    pc.pull_dense_table_id.extend([i])
X
fix bug  
xjqbest 已提交
136
                    dense_table_set.add(i)
D
dongdaxiang 已提交
137
                break
138

139 140 141
        trainer_desc.device_worker_name = "DownpourWorker"
        pull_thread = trainer_desc.pull_dense_param
        pull_thread.device_num = trainer_desc.thread_num
142 143 144 145 146 147 148 149
        if opt_info.get("program_id_to_worker") is None:
            raise ValueError("opt_info must have program_id_to_worker")
        prog_id_to_worker = opt_info["program_id_to_worker"]
        if prog_id_to_worker.get(program_id) is None:
            raise ValueError("%s not found in program_id_to_worker" %
                             program_id)
        worker = opt_info["program_id_to_worker"][program_id]
        for i in worker.get_desc().dense_table:
150 151
            if i.table_id in dense_table_set:
                dense_table = pull_thread.dense_table.add()
152
                dense_table.dense_value_name.extend(i.dense_variable_name)
153 154
                dense_table.table_id = \
                    i.table_id
155
        sparse_len = len(worker.get_desc().sparse_table)
156 157
        for i in range(sparse_len):
            sparse_table = downpour.sparse_table.add()
158 159 160 161 162 163 164
            sparse_table.table_id = worker.get_desc().sparse_table[i].table_id
            sparse_table.sparse_key_name.extend(worker.get_desc().sparse_table[
                i].slot_key)
            sparse_table.sparse_value_name.extend(worker.get_desc()
                                                  .sparse_table[i].slot_value)
            sparse_table.sparse_grad_name.extend(worker.get_desc().sparse_table[
                i].slot_gradient)
165 166
            if opt_info["use_cvm"] or "no_cvm" in opt_info and opt_info[
                    "no_cvm"] == True:
167 168 169 170 171 172 173 174 175 176 177
                sparse_table.emb_dim = \
                    self._fleet_desc.server_param.downpour_server_param.downpour_table_param[
                    i].accessor.fea_dim
                sparse_table.fea_dim = sparse_table.emb_dim
            else:
                sparse_table.emb_dim = \
                    self._fleet_desc.server_param.downpour_server_param.downpour_table_param[
                    i].accessor.fea_dim - 2
                sparse_table.fea_dim = sparse_table.emb_dim + 2
            # TODO(guru4elephant): hard code here, need to improve
            sparse_table.label_var_name = "click"
178 179 180
        if opt_info["stat_var_names"]:
            for i in opt_info["stat_var_names"]:
                downpour.stat_var_names.extend([i])
181

182
        for i in worker.get_desc().dense_table:
X
fix bug  
xjqbest 已提交
183 184 185
            if i.table_id in dense_table_set:
                dense_table = downpour.dense_table.add()
                dense_table.table_id = i.table_id
186
                dense_table.dense_value_name.extend(i.dense_variable_name)
X
fix bug  
xjqbest 已提交
187 188
                dense_table.dense_grad_name.extend(
                    i.dense_gradient_variable_name)
X
xujiaqi01 已提交
189
        downpour.skip_ops.extend(worker.get_desc().skip_op)
D
dongdaxiang 已提交
190
        if self._infer:
191 192
            downpour.push_dense = False
            downpour.push_sparse = False
X
fix bug  
xjqbest 已提交
193

194

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
class DownpourSGDOPT(DeviceWorker):
    """
    DownpourSGDOPT is a kind of distributed SGD algorithm.
    """

    def __init__(self):
        """
        Init.
        initialize downpourSGDOPT device worker
        """
        super(DownpourSGDOPT, self).__init__()

    def _gen_worker_desc(self, trainer_desc):
        """
        Generator worker desc, which device worker is DownpourWorker.

        Args:
            trainer_desc(TrainerDesc): a TrainerDesc object
        """
        dense_table_set = set()
        program_id = str(id(self._program))
        if self._program == None:
            print("program of current device worker is not configured")
            exit(-1)
        opt_info = self._program._fleet_opt
        program_configs = opt_info["program_configs"]
        downpour = trainer_desc.downpour_param

        for pid in program_configs:
            if pid == program_id:
                pc = downpour.program_config.add()
                pc.program_id = program_id
                for i in program_configs[program_id]["push_sparse"]:
                    pc.push_sparse_table_id.extend([i])
                for i in program_configs[program_id]["push_dense"]:
                    pc.push_dense_table_id.extend([i])
                    dense_table_set.add(i)
                for i in program_configs[program_id]["pull_sparse"]:
                    pc.pull_sparse_table_id.extend([i])
                for i in program_configs[program_id]["pull_dense"]:
                    pc.pull_dense_table_id.extend([i])
                    dense_table_set.add(i)
                break

        trainer_desc.device_worker_name = "DownpourWorkerOpt"
        pull_thread = trainer_desc.pull_dense_param
        pull_thread.device_num = trainer_desc.thread_num
        if opt_info.get("program_id_to_worker") is None:
            raise ValueError("opt_info must have program_id_to_worker")
        prog_id_to_worker = opt_info["program_id_to_worker"]
        if prog_id_to_worker.get(program_id) is None:
            raise ValueError("%s not found in program_id_to_worker" %
                             program_id)
        worker = opt_info["program_id_to_worker"][program_id]
        for i in worker.get_desc().dense_table:
            if i.table_id in dense_table_set:
                dense_table = pull_thread.dense_table.add()
                dense_table.dense_value_name.extend(i.dense_variable_name)
                dense_table.table_id = \
                    i.table_id
        sparse_len = len(worker.get_desc().sparse_table)
        for i in range(sparse_len):
            sparse_table = downpour.sparse_table.add()
            sparse_table.table_id = worker.get_desc().sparse_table[i].table_id
            sparse_table.sparse_key_name.extend(worker.get_desc().sparse_table[
                i].slot_key)
            sparse_table.sparse_value_name.extend(worker.get_desc()
                                                  .sparse_table[i].slot_value)
            sparse_table.sparse_grad_name.extend(worker.get_desc().sparse_table[
                i].slot_gradient)
            if opt_info["use_cvm"] or "no_cvm" in opt_info and opt_info[
                    "no_cvm"] == True:
                sparse_table.emb_dim = \
                    self._fleet_desc.server_param.downpour_server_param.downpour_table_param[
                    i].accessor.fea_dim
                sparse_table.fea_dim = sparse_table.emb_dim
            else:
                sparse_table.emb_dim = \
                    self._fleet_desc.server_param.downpour_server_param.downpour_table_param[
                    i].accessor.fea_dim - 2
                sparse_table.fea_dim = sparse_table.emb_dim + 2
            # TODO(guru4elephant): hard code here, need to improve
            sparse_table.label_var_name = "click"
        if "local_tables" in opt_info and sparse_table.table_id in opt_info[
                "local_tables"]:
            sparse_table.is_local = True
        if "async_tables" in opt_info and sparse_table.table_id in opt_info[
                "async_tables"]:
            sparse_table.is_async = True
        if opt_info["stat_var_names"]:
            for i in opt_info["stat_var_names"]:
                downpour.stat_var_names.extend([i])

        for i in worker.get_desc().dense_table:
            if i.table_id in dense_table_set:
                dense_table = downpour.dense_table.add()
                dense_table.table_id = i.table_id
                dense_table.dense_value_name.extend(i.dense_variable_name)
                dense_table.dense_grad_name.extend(
                    i.dense_gradient_variable_name)
        downpour.skip_ops.extend(worker.get_desc().skip_op)
        if self._infer:
            downpour.push_dense = False
            downpour.push_sparse = False


H
hutuxian 已提交
301
class Section(DeviceWorker):
302
    """SectionWorker."""
H
hutuxian 已提交
303 304

    def __init__(self):
305
        """Init."""
H
hutuxian 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
        super(Section, self).__init__()

    def _gen_worker_desc(self, trainer_desc):
        """
        Generator worker desc, which device worker is SectionWorker.
        Args:
            trainer_desc(TrainerDesc): a TrainerDesc object
        """
        from google.protobuf import text_format
        from . import core
        trainer_desc.device_worker_name = "SectionWorker"
        pipeline_opt = self._program._pipeline_opt
        section_param = trainer_desc.section_param
        section_param.queue_size = pipeline_opt["queue_size"]
        section_param.sync_steps = pipeline_opt["sync_steps"]
        section_param.start_cpu_core_id = pipeline_opt["start_cpu_core_id"]
        for e in pipeline_opt["param_need_sync"]:
            section_param.param_need_sync.append(e)
        for i, program in enumerate(pipeline_opt["section_program_list"]):
            cfg = section_param.section_config.add()
            cfg.program_desc.ParseFromString(program["program"]._get_desc()
                                             .serialize_to_string())
            # TODO: why does not work
            #cfg.program_desc.CopyFrom(program.program._get_desc())
            place = pipeline_opt["place_list"][i]
            if isinstance(place, core.CPUPlace):
                cfg.place = cfg.CPUPlace
            elif isinstance(place, core.CUDAPlace):
                cfg.place = cfg.CUDAPlace
            elif isinstance(place, core.CUDAPinnedPlace):
                cfg.place = cfg.CUDAPinnedPlace
            else:
                raise NotImplementedError(
                    "SectionWorker only supports CPUPlace, CUDAPlace and CUDAPinnedPlace now."
                )

            cfg.concurrency = pipeline_opt["concurrency_list"][i]
            for var in program["input_set"]:
                cfg.section_in_var_names.append(var)
            for var in program["output_set"]:
                cfg.section_out_var_names.append(var)


349
class DeviceWorkerFactory(object):
350
    def _create_device_worker(self, worker_type):
351 352
        classname = worker_type.capitalize()
        return globals()[classname]()