sparse_utils_kernel.cu 23.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <thrust/execution_policy.h>
#include <thrust/remove.h>

18
#include "paddle/phi/backends/gpu/gpu_context.h"
19
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
20
#include "paddle/phi/core/enforce.h"
21 22
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_meta.h"
23
#include "paddle/phi/core/visit_type.h"
Z
zhangkaihuo 已提交
24
#include "paddle/phi/kernels/funcs/math_function.h"
25
#include "paddle/phi/kernels/funcs/sparse/common_shape.h"
26
#include "paddle/phi/kernels/sparse/sparse_utils_kernel.h"
27

28
namespace phi {
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
namespace sparse {

template <typename T>
inline __device__ bool DevIsZero(const T* data, const int64_t cols) {
  const T zero = static_cast<T>(0);
  // TODO(zhangkaihuo): check the data is zero or not in parallen when cols > 1
  for (int64_t i = 0; i < cols; i++) {
    if (data[i] != zero) {
      return false;
    }
  }
  return true;
}

template <typename T>
__global__ void GetNonZeroNums(const T* dense_data,
                               const int rows,
                               const int cols,
                               int* non_zero_num,
                               int* temp_indexs) {
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  __shared__ int counter;
  if (threadIdx.x == 0) counter = 0;
  __syncthreads();

  for (int i = tid; i < rows; i += gridDim.x * blockDim.x) {
    int index = -1;
    // TODO(zhangkaihuo): when cols=1, vectorization can be used
    if (!DevIsZero(dense_data + i * cols, cols)) {
      // use reductions?
      atomicAdd(&counter, 1);
      index = i;
    }
    temp_indexs[i] = index;
  }
  __syncthreads();
  if (threadIdx.x == 0) {
    atomicAdd(non_zero_num, counter);
  }
}

template <typename T>
__global__ void GetNonZeroElementsAndIndices(const T* dense_data,
                                             const int64_t sparse_dim,
                                             const int64_t cols,
                                             const int64_t* x_dims,
                                             const int non_zero_num,
                                             const int* indexs,
                                             int64_t* indices,
                                             T* sparse_data) {
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < non_zero_num; i += gridDim.x * blockDim.x) {
    int64_t sparse_index = indexs[i];
    int64_t x_index = sparse_index;
    for (int64_t j = sparse_dim - 1; j >= 0; j--) {
      indices[j * non_zero_num + i] = sparse_index % x_dims[j];
      sparse_index /= x_dims[j];
    }

    for (int j = 0; j < cols; j++) {
      sparse_data[i * cols + j] = dense_data[x_index * cols + j];
    }
  }
}

template <typename T, typename Context>
void DenseToSparseCooKernel(const Context& dev_ctx,
                            const DenseTensor& x,
                            const int64_t sparse_dim,
                            SparseCooTensor* out) {
  const T* x_data = x.data<T>();
  const auto& x_dims = x.dims();
101 102 103 104 105 106
  PADDLE_ENFORCE_LE(sparse_dim,
                    x_dims.size(),
                    phi::errors::InvalidArgument(
                        "sparse_dim must be less than the size of x.dims()"));
  PADDLE_ENFORCE_GT(
      sparse_dim, 0, phi::errors::InvalidArgument("sparse_dim must be >0"));
107 108 109
  auto dims_2d = flatten_to_2d(x_dims, sparse_dim);
  const int rows = dims_2d[0];
  const int cols = dims_2d[1];
110 111
  DenseTensor nums = phi::Empty<int32_t>(dev_ctx, {1});
  DenseTensor d_x_dims = phi::Empty<int64_t>(dev_ctx, {x_dims.size()});
112 113

  // 1. get numbers of non zero elements, and get the index of non zero elements
114 115 116
  int* nums_ptr = nums.data<int>();
  phi::backends::gpu::GpuMemsetAsync(
      nums_ptr, 0, sizeof(int), dev_ctx.stream());
117
  auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, rows, 1);
118

119 120 121
  DenseTensor temp_indexs = phi::Empty<int32_t>(dev_ctx, {rows});
  int* temp_indexs_ptr = temp_indexs.data<int>();

122 123 124 125
  GetNonZeroNums<<<config.block_per_grid.x,
                   config.thread_per_block.x,
                   0,
                   dev_ctx.stream()>>>(
126
      x_data, rows, cols, nums_ptr, temp_indexs_ptr);
127

128 129 130 131 132 133 134 135 136 137 138
#ifdef PADDLE_WITH_HIP
  thrust::remove(thrust::hip::par.on(dev_ctx.stream()),
#else
  thrust::remove(thrust::cuda::par.on(dev_ctx.stream()),
#endif
                 temp_indexs_ptr,
                 temp_indexs_ptr + rows,
                 -1);

  // 2. copy non_zero_num to host, copy x_dims to device
  int non_zero_num = 0;
139 140 141 142 143 144 145 146 147 148
  phi::backends::gpu::GpuMemcpyAsync(&non_zero_num,
                                     nums_ptr,
                                     sizeof(int),
                                     gpuMemcpyDeviceToHost,
                                     dev_ctx.stream());
  phi::backends::gpu::GpuMemcpyAsync(d_x_dims.data<int64_t>(),
                                     x_dims.Get(),
                                     x_dims.size() * sizeof(x_dims[0]),
                                     gpuMemcpyHostToDevice,
                                     dev_ctx.stream());
149 150 151

  dev_ctx.Wait();  // wait the copy

152 153
  const auto values_dims =
      phi::funcs::sparse::InferDenseDims(x_dims, sparse_dim, non_zero_num);
Z
zyfncg 已提交
154 155 156 157 158 159
  phi::DenseTensor indices = phi::Empty<int64_t>(
      dev_ctx, {sparse_dim, static_cast<int64_t>(non_zero_num)});
  int64_t* indices_data = indices.data<int64_t>();
  phi::DenseTensor values;
  values.Resize(values_dims);
  T* sparse_data = dev_ctx.template Alloc<T>(&values);
160 161

  // 3. calc indices by indexs and get values by indexs
162 163 164 165 166 167 168 169 170 171 172 173
  config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, non_zero_num, 1);
  GetNonZeroElementsAndIndices<<<config.block_per_grid.x,
                                 config.thread_per_block.x,
                                 0,
                                 dev_ctx.stream()>>>(x_data,
                                                     sparse_dim,
                                                     cols,
                                                     d_x_dims.data<int64_t>(),
                                                     non_zero_num,
                                                     temp_indexs_ptr,
                                                     indices_data,
                                                     sparse_data);
174 175 176
  out->SetMember(indices, values, x_dims, true);
}

177 178
template <typename IntT>
__global__ void GetBatchSizes(const IntT* crows,
179 180
                              const int rows,
                              const int batchs,
181
                              IntT* batch_sizes) {
182 183 184 185 186 187
  const int tid = threadIdx.x + blockIdx.x * blockDim.x;
  if (tid < batchs) {
    batch_sizes[tid] = crows[tid * (rows + 1) + rows];
  }
}

188 189 190 191 192
template <typename IntT>
__global__ void ConvertCsrCrowsToCooRows(const IntT* crows_ptr,
                                         const IntT* crows_offsets,
                                         IntT* rows_ptr,
                                         IntT* batch_ptr,
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
                                         const int rows) {
  const int b = blockIdx.y;
  const int64_t offset = crows_offsets ? crows_offsets[b] : 0;
  const int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < rows; i += gridDim.x * blockDim.x) {
    for (int j = crows_ptr[b * (rows + 1) + i];
         j < crows_ptr[b * (rows + 1) + i + 1];
         j++) {
      rows_ptr[offset + j] = i;
      if (batch_ptr) {
        batch_ptr[offset + j] = b;
      }
    }
  }
}

209 210 211 212
template <typename T, typename IntT>
void SparseCsrToCooGPUKernel(const GPUContext& dev_ctx,
                             const SparseCsrTensor& x,
                             SparseCooTensor* out) {
213 214 215 216 217
  const DDim& x_dims = x.dims();
  const int64_t non_zero_num = x.non_zero_cols().numel();
  const auto& csr_crows = x.non_zero_crows();
  const auto& csr_cols = x.non_zero_cols();
  const auto& csr_values = x.non_zero_elements();
218 219
  const IntT* csr_crows_data = csr_crows.data<IntT>();
  const IntT* csr_cols_data = csr_cols.data<IntT>();
220 221 222 223 224 225 226 227 228
  const T* csr_values_data = csr_values.data<T>();

  int64_t sparse_dim = 2;
  if (x_dims.size() == 3) {
    sparse_dim = 3;
  }
  int batchs = x_dims.size() == 2 ? 1 : x_dims[0];
  int rows = x_dims.size() == 2 ? x_dims[0] : x_dims[1];

229 230 231 232 233 234
  DenseTensor indices = phi::Empty<IntT>(dev_ctx, {sparse_dim, non_zero_num});
  DenseTensor values = phi::EmptyLike<T, GPUContext>(dev_ctx, csr_values);
  DenseTensor offsets = phi::Empty<IntT>(dev_ctx, {batchs});
  IntT* coo_indices = indices.data<IntT>();
  IntT* batch_ptr = x_dims.size() == 2 ? nullptr : coo_indices;
  IntT* coo_rows_data =
235
      x_dims.size() == 2 ? coo_indices : batch_ptr + non_zero_num;
236 237 238
  IntT* coo_cols_data = coo_rows_data + non_zero_num;
  IntT* offsets_ptr = batchs == 1 ? nullptr : offsets.data<IntT>();
  T* coo_values_data = values.data<T>();
239 240

  if (batchs > 1) {
241
    auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, batchs, 1);
242
    GetBatchSizes<IntT><<<config.block_per_grid.x, config.thread_per_block.x>>>(
243 244 245 246 247 248 249 250 251 252 253 254
        csr_crows_data, rows, batchs, offsets_ptr);

#ifdef PADDLE_WITH_HIP
    thrust::exclusive_scan(thrust::hip::par.on(dev_ctx.stream()),
#else
    thrust::exclusive_scan(thrust::cuda::par.on(dev_ctx.stream()),
#endif
                           offsets_ptr,
                           offsets_ptr + batchs,
                           offsets_ptr);
  }

255 256
  auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, rows, 1);
  config.block_per_grid.y = batchs;
257 258 259 260 261 262 263 264 265 266 267 268 269 270
  ConvertCsrCrowsToCooRows<IntT>
      <<<config.block_per_grid, config.thread_per_block.x>>>(
          csr_crows_data, offsets_ptr, coo_rows_data, batch_ptr, rows);

  phi::backends::gpu::GpuMemcpyAsync(coo_cols_data,
                                     csr_cols_data,
                                     sizeof(IntT) * non_zero_num,
                                     gpuMemcpyDeviceToDevice,
                                     dev_ctx.stream());
  phi::backends::gpu::GpuMemcpyAsync(coo_values_data,
                                     csr_values_data,
                                     sizeof(T) * non_zero_num,
                                     gpuMemcpyDeviceToDevice,
                                     dev_ctx.stream());
271 272 273 274

  out->SetMember(indices, values, x_dims, true);
}

275 276 277 278 279 280 281 282 283 284 285 286
template <typename T, typename Context>
void SparseCsrToCooKernel(const Context& dev_ctx,
                          const SparseCsrTensor& x,
                          SparseCooTensor* out) {
  PD_VISIT_INTEGRAL_TYPES(
      x.non_zero_crows().dtype(), "SparseCsrToCooGPUKernel", ([&] {
        SparseCsrToCooGPUKernel<T, data_t>(dev_ctx, x, out);
      }));
}

template <typename IntT>
__global__ void GetBatchsOffset(const IntT* batchs_ptr,
Z
zhangkaihuo 已提交
287
                                const int batchs,
288
                                const int non_zero_num,
Z
zhangkaihuo 已提交
289
                                int* batchs_offset) {
290 291 292
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < non_zero_num; i += gridDim.x * blockDim.x) {
    if (i == non_zero_num - 1 || batchs_ptr[i] != batchs_ptr[i + 1]) {
Z
zhangkaihuo 已提交
293 294 295 296 297
      const int start = batchs_ptr[i];
      const int end = i == non_zero_num - 1 ? batchs : batchs_ptr[i + 1];
      for (int j = start; j < end; j++) {
        batchs_offset[j] = i + 1;
      }
298 299 300 301
    }
  }
}

302
template <typename IntT>
303
__global__ void ConvertCooRowsToCsrCrows(
Z
zhangkaihuo 已提交
304
    const int* batchs_offset,  // can be null if batchs = 1
305 306
    const IntT* coo_rows_data,
    IntT* csr_crows_data,
307 308 309 310 311
    const int rows,
    const int64_t non_zero_num) {
  const int b = blockIdx.y;
  int batch_non_zero_num =
      batchs_offset == nullptr ? non_zero_num : batchs_offset[b];
312
  IntT batch_start = 0;
313 314 315 316
  if (b > 0) {
    batch_start = batchs_offset[b - 1];
    batch_non_zero_num -= batch_start;
  }
Z
zhangkaihuo 已提交
317

318
  const IntT* coo_rows_ptr = coo_rows_data + batch_start;
319 320 321
  const int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < batch_non_zero_num; i += gridDim.x * blockDim.x) {
    if (i == 0) {
322
      for (IntT j = 0; j <= coo_rows_ptr[0]; j++) {
323 324 325
        csr_crows_data[b * (rows + 1) + j] = 0;
      }
    } else {
326
      for (IntT j = coo_rows_ptr[i - 1]; j < coo_rows_ptr[i]; j++) {
327 328 329 330
        csr_crows_data[b * (rows + 1) + j + 1] = i;
      }
    }
    if (i == batch_non_zero_num - 1) {
331
      for (IntT i = coo_rows_ptr[batch_non_zero_num - 1] + 1; i < rows + 1;
332 333 334 335 336
           i++) {
        csr_crows_data[b * (rows + 1) + i] = batch_non_zero_num;
      }
    }
  }
Z
zhangkaihuo 已提交
337 338 339 340 341
  if (batch_non_zero_num == 0) {
    for (int i = tid; i < rows + 1; i += gridDim.x * blockDim.x) {
      csr_crows_data[b * (rows + 1) + i] = 0;
    }
  }
342 343
}

344 345 346 347
template <typename T, typename IntT>
void SparseCooToCsrGPUKernel(const GPUContext& dev_ctx,
                             const SparseCooTensor& x,
                             SparseCsrTensor* out) {
348 349 350 351
  const auto& x_dims = x.dims();
  bool valid = x_dims.size() == 2 || x_dims.size() == 3;
  PADDLE_ENFORCE_EQ(valid,
                    true,
352
                    phi::errors::InvalidArgument(
353 354 355 356 357 358 359
                        "SparseCsrTensor only support 2-D or 3-D matrix"));
  const int64_t non_zero_num = x.nnz();
  if (non_zero_num <= 0) return;

  int batchs = x_dims.size() == 2 ? 1 : x_dims[0];
  int rows = x_dims.size() == 2 ? x_dims[0] : x_dims[1];

Z
zyfncg 已提交
360
  phi::DenseTensor non_zero_crows =
361 362 363 364 365 366
      phi::Empty<IntT>(dev_ctx, {batchs * (rows + 1)});
  phi::DenseTensor non_zero_cols = phi::Empty<IntT>(dev_ctx, {non_zero_num});
  phi::DenseTensor non_zero_elements =
      phi::EmptyLike<T, GPUContext>(dev_ctx, x.non_zero_elements());
  IntT* csr_crows_data = non_zero_crows.data<IntT>();
  IntT* csr_cols_data = non_zero_cols.data<IntT>();
Z
zyfncg 已提交
367
  T* csr_values_data = non_zero_elements.data<T>();
368 369 370

  const auto& coo_indices = x.non_zero_indices();
  const auto& coo_values = x.non_zero_elements();
371 372
  const IntT* batchs_ptr = coo_indices.data<IntT>();
  const IntT* coo_rows_data =
373
      batchs == 1 ? batchs_ptr : batchs_ptr + non_zero_num;
374
  const IntT* coo_cols_data = coo_rows_data + non_zero_num;
375 376
  const T* coo_values_data = coo_values.data<T>();

377
  auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, batchs, 1);
378
  if (batchs > 1) {
Z
zhangkaihuo 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391
    auto config =
        phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, non_zero_num, 1);
    phi::DenseTensor batchs_offset = phi::Empty<int>(dev_ctx, {batchs});
    int* batchs_offset_ptr = batchs_offset.data<int>();
    phi::funcs::SetConstant<GPUContext, int> set_zero;
    // set zero if the nnz=0 of batchs[0]
    set_zero(dev_ctx, &batchs_offset, static_cast<IntT>(0));
    GetBatchsOffset<IntT><<<config.block_per_grid.x,
                            config.thread_per_block.x,
                            0,
                            dev_ctx.stream()>>>(
        batchs_ptr, batchs, non_zero_num, batchs_offset_ptr);

392
    config.block_per_grid.y = batchs;
393 394 395 396
    ConvertCooRowsToCsrCrows<IntT><<<config.block_per_grid,
                                     config.thread_per_block.x,
                                     0,
                                     dev_ctx.stream()>>>(
397 398
        batchs_offset_ptr, coo_rows_data, csr_crows_data, rows, non_zero_num);
  } else {
399 400 401 402
    ConvertCooRowsToCsrCrows<IntT><<<config.block_per_grid.x,
                                     config.thread_per_block.x,
                                     0,
                                     dev_ctx.stream()>>>(
403 404 405
        nullptr, coo_rows_data, csr_crows_data, rows, non_zero_num);
  }

406 407 408 409 410 411 412 413 414 415
  phi::backends::gpu::GpuMemcpyAsync(csr_cols_data,
                                     coo_cols_data,
                                     sizeof(IntT) * non_zero_num,
                                     gpuMemcpyDeviceToDevice,
                                     dev_ctx.stream());
  phi::backends::gpu::GpuMemcpyAsync(csr_values_data,
                                     coo_values_data,
                                     sizeof(T) * non_zero_num,
                                     gpuMemcpyDeviceToDevice,
                                     dev_ctx.stream());
416 417 418
  out->SetMember(non_zero_crows, non_zero_cols, non_zero_elements, x_dims);
}

419 420 421 422 423 424 425 426 427 428
template <typename T, typename Context>
void SparseCooToCsrKernel(const Context& dev_ctx,
                          const SparseCooTensor& x,
                          SparseCsrTensor* out) {
  PD_VISIT_INTEGRAL_TYPES(
      x.non_zero_indices().dtype(), "SparseCooToCsrGPUKernel", ([&] {
        SparseCooToCsrGPUKernel<T, data_t>(dev_ctx, x, out);
      }));
}

Z
zhangkaihuo 已提交
429 430
template <typename ValueT, typename IndicesT>
__global__ void KernelSparseCooToDense(const IndicesT* indices,
431
                                       const int64_t* sparse_offsets,
Z
zhangkaihuo 已提交
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
                                       const ValueT* data,
                                       ValueT* dense_data,
                                       const IndicesT non_zero_num,
                                       const int64_t base_offset,
                                       const int64_t sparse_dim) {
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < non_zero_num; i += gridDim.x * blockDim.x) {
    int64_t index = 0;
    for (int j = 0; j < sparse_dim; j++) {
      index += indices[j * non_zero_num + i] * sparse_offsets[j];
    }

    for (int j = 0; j < base_offset; j++) {
      dense_data[index * base_offset + j] = data[i * base_offset + j];
    }
  }
}

450 451 452 453
template <typename T, typename IntT>
void SparseCooToDenseGPUKernel(const GPUContext& dev_ctx,
                               const SparseCooTensor& x,
                               DenseTensor* out) {
Z
zhangkaihuo 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466
  const auto non_zero_num = x.nnz();
  const auto dense_dims = x.dims();
  const auto indices = x.non_zero_indices();
  const auto values = x.non_zero_elements();
  const auto indices_dims = indices.dims();
  int64_t sparse_dim = indices_dims[0];
  if (indices_dims.size() == 1) {
    sparse_dim = 1;
  }
  const int64_t dense_dim = values.dims().size() - 1;

  const auto place = dev_ctx.GetPlace();
  const T* x_data = values.data<T>();
Z
zhangkaihuo 已提交
467 468 469 470
  *out = phi::Empty(dev_ctx,
                    phi::DenseTensorMeta(
                        x.dtype(), x.dims(), x.non_zero_elements().layout()));
  T* out_data = out->data<T>();
Z
zhangkaihuo 已提交
471 472 473 474 475 476 477 478 479 480 481
  int64_t base_offset = 1;
  for (int64_t i = 0; i < dense_dim; i++) {
    base_offset *= dense_dims[sparse_dim + i];
  }
  std::vector<int64_t> sparse_offsets(sparse_dim);
  int64_t offset = 1;
  for (int i = sparse_dim - 1; i >= 0; i--) {
    sparse_offsets[i] = offset;
    offset *= dense_dims[i];
  }

482 483 484 485 486 487 488 489 490
  DenseTensor d_sparse_offsets = Empty<int64_t>(dev_ctx, {sparse_dim});

  phi::backends::gpu::GpuMemcpyAsync(d_sparse_offsets.data<int64_t>(),
                                     sparse_offsets.data(),
                                     sparse_dim * sizeof(int64_t),
                                     gpuMemcpyHostToDevice,
                                     dev_ctx.stream());
  phi::backends::gpu::GpuMemsetAsync(
      out_data, 0, sizeof(T) * out->numel(), dev_ctx.stream());
Z
zhangkaihuo 已提交
491

492 493
  auto config =
      phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, non_zero_num, 1);
Z
zhangkaihuo 已提交
494

495
  KernelSparseCooToDense<T, IntT>
496 497 498
      <<<config.block_per_grid.x,
         config.thread_per_block.x,
         0,
499
         dev_ctx.stream()>>>(indices.data<IntT>(),
500 501 502 503 504 505
                             d_sparse_offsets.data<int64_t>(),
                             x_data,
                             out_data,
                             non_zero_num,
                             base_offset,
                             sparse_dim);
Z
zhangkaihuo 已提交
506 507
}

508 509 510 511 512 513 514 515 516 517
template <typename T, typename Context>
void SparseCooToDenseKernel(const Context& dev_ctx,
                            const SparseCooTensor& x,
                            DenseTensor* out) {
  PD_VISIT_INTEGRAL_TYPES(
      x.non_zero_indices().dtype(), "SparseCooToDenseGPUKernel", ([&] {
        SparseCooToDenseGPUKernel<T, data_t>(dev_ctx, x, out);
      }));
}

518
}  // namespace sparse
519
}  // namespace phi
520

521
PD_REGISTER_KERNEL(dense_to_sparse_coo,
522 523
                   GPU,
                   ALL_LAYOUT,
524
                   phi::sparse::DenseToSparseCooKernel,
525 526
                   float,
                   double,
527
                   phi::dtype::float16,
528 529 530 531 532
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
533

534
PD_REGISTER_KERNEL(sparse_csr_to_coo,
535 536
                   GPU,
                   ALL_LAYOUT,
537
                   phi::sparse::SparseCsrToCooKernel,
538 539
                   float,
                   double,
540
                   phi::dtype::float16,
541 542 543 544 545
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
546

547
PD_REGISTER_KERNEL(sparse_coo_to_csr,
548 549
                   GPU,
                   ALL_LAYOUT,
550
                   phi::sparse::SparseCooToCsrKernel,
551 552
                   float,
                   double,
553
                   phi::dtype::float16,
554 555 556 557 558 559
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}

560
PD_REGISTER_KERNEL(dense_to_sparse_csr,
561 562
                   GPU,
                   ALL_LAYOUT,
563
                   phi::sparse::DenseToSparseCsrKernel,
564 565
                   float,
                   double,
566
                   phi::dtype::float16,
567 568 569 570 571
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
Z
zhangkaihuo 已提交
572

573
PD_REGISTER_KERNEL(sparse_coo_to_dense,
Z
zhangkaihuo 已提交
574 575
                   GPU,
                   ALL_LAYOUT,
576
                   phi::sparse::SparseCooToDenseKernel,
Z
zhangkaihuo 已提交
577 578
                   float,
                   double,
579
                   phi::dtype::float16,
Z
zhangkaihuo 已提交
580 581 582 583 584 585
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}

586
PD_REGISTER_KERNEL(sparse_csr_to_dense,
Z
zhangkaihuo 已提交
587 588
                   GPU,
                   ALL_LAYOUT,
589
                   phi::sparse::SparseCsrToDenseKernel,
Z
zhangkaihuo 已提交
590 591
                   float,
                   double,
592
                   phi::dtype::float16,
Z
zhangkaihuo 已提交
593 594 595 596 597
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627

PD_REGISTER_KERNEL(coo_values,
                   GPU,
                   ALL_LAYOUT,
                   phi::sparse::CooValuesKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}

PD_REGISTER_KERNEL(csr_values,
                   GPU,
                   ALL_LAYOUT,
                   phi::sparse::CsrValuesKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}
628 629 630 631 632 633 634 635 636 637 638 639

PD_REGISTER_KERNEL(sparse_coo_tensor,
                   GPU,
                   ALL_LAYOUT,
                   phi::sparse::SparseCooTensorKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int16_t,
                   int,
                   int64_t) {}