multiplex_op.h 3.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yibing Liu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yibing Liu 已提交
14 15 16

#pragma once

Y
Yi Wang 已提交
17 18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memcpy.h"
Y
Yibing Liu 已提交
20 21 22 23

namespace paddle {
namespace operators {

Q
QI JUN 已提交
24
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
25
class MultiplexCPUKernel : public framework::OpKernel<T> {
Y
Yibing Liu 已提交
26 27 28
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
    auto ins = ctx.MultiInput<framework::Tensor>("X");
29
    auto ids = ctx.Input<framework::Tensor>("Ids");
Y
Yibing Liu 已提交
30
    auto* out = ctx.Output<framework::Tensor>("Out");
31

Y
Yibing Liu 已提交
32 33
    out->mutable_data<T>(ctx.GetPlace());

34
    auto rows = ins[0]->dims()[0];
35
    auto cols = ins[0]->numel() / rows;
36
    auto index = ids->data<int32_t>();
37 38
    platform::CPUPlace place =
        BOOST_GET_CONST(platform::CPUPlace, ctx.GetPlace());
Y
Yibing Liu 已提交
39
    for (auto i = 0; i < rows; i++) {
40 41
      int32_t k = index[i];
      PADDLE_ENFORCE_GE(k, 0, "index must be nonnegative.");
Q
qiaolongfei 已提交
42
      PADDLE_ENFORCE_LT(static_cast<size_t>(k), ins.size(),
Y
Yibing Liu 已提交
43 44 45
                        "index exceeds the number of candidate tensors.");
      memory::Copy(place, out->data<T>() + i * cols, place,
                   ins[k]->data<T>() + i * cols, cols * sizeof(T));
Y
Yibing Liu 已提交
46 47 48 49
    }
  }
};

Q
QI JUN 已提交
50
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
51
class MultiplexGradCPUKernel : public framework::OpKernel<T> {
Y
Yibing Liu 已提交
52 53 54
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
    auto* d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
55
    auto* ids = ctx.Input<framework::Tensor>("Ids");
Y
Yibing Liu 已提交
56 57
    auto d_ins =
        ctx.MultiOutput<framework::Tensor>(framework::GradVarName("X"));
S
sneaxiy 已提交
58 59

    size_t idx = -1UL;
60
    for (size_t i = 0; i < d_ins.size(); i++) {
61 62
      if (d_ins[i]) {
        d_ins[i]->mutable_data<T>(ctx.GetPlace());
63
        auto t = framework::EigenVector<T>::Flatten(*d_ins[i]);
Q
QI JUN 已提交
64 65
        t.device(*ctx.template device_context<DeviceContext>().eigen_device()) =
            t.constant(static_cast<T>(0));
S
sneaxiy 已提交
66 67

        idx = i;
68
      }
Y
Yibing Liu 已提交
69 70
    }

S
sneaxiy 已提交
71 72 73 74
    if (idx == -1UL) return;

    auto rows = d_ins[idx]->dims()[0];
    auto cols = d_ins[idx]->numel() / rows;
75
    auto* index = ids->data<int32_t>();
76 77
    platform::CPUPlace place =
        BOOST_GET_CONST(platform::CPUPlace, ctx.GetPlace());
Y
Yibing Liu 已提交
78
    for (auto i = 0; i < rows; i++) {
79
      size_t k = static_cast<size_t>(index[i]);
Y
Yibing Liu 已提交
80 81 82
      if (d_ins[k]) {
        memory::Copy(place, d_ins[k]->data<T>() + i * cols, place,
                     d_out->data<T>() + i * cols, cols * sizeof(T));
83
      }
Y
Yibing Liu 已提交
84 85 86
    }
  }
};
Q
qiaolongfei 已提交
87 88
}  // namespace operators
}  // namespace paddle