engine.py 70.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
16
import json
17
import logging
18
import numbers
19 20
import os
import random
21

22 23
import numpy as np

24
import paddle
25
import paddle.distributed.auto_parallel.utils as auto_utils
26
from paddle import static, utils
27
from paddle.distributed import fleet
28 29 30 31
from paddle.fluid.executor import _to_name_str
from paddle.framework import IrGraph
from paddle.framework import _current_expected_place as _get_device
from paddle.framework import core, in_dygraph_mode
32
from paddle.metric import Metric
33
from paddle.static import InputSpec, Operator, Variable, global_scope
34

35
from ..utils.log_utils import get_logger
Z
zhaoyingli 已提交
36
from .callbacks import config_callbacks
37
from .cluster import Cluster, get_default_cluster
38 39 40
from .converter import Converter
from .cost.estimate_cost import get_cost_from_engine
from .dist_context import DistributedContext, get_default_distributed_context
41 42
from .dist_loader import (
    DistributedDataLoader,
43
    DistributedDataLoaderFromGenerator,
44
)
45 46 47
from .dist_op import DistributedOperator
from .dist_saver import DistributedSaver
from .helper import ProgramHelper
48
from .interface import CollectionNames, fetch, get_collection
49 50 51 52
from .parallelizer_v2 import Parallelizer
from .planner_v2 import Planner
from .process_group import get_all_process_groups, new_process_group
from .strategy import Strategy
53

54 55

class Engine:
56
    """
57 58
    An Engine object can provide the full power of auto parallel to users.
    With the help of it, users can easily obtain the abilities of the
59 60 61 62 63 64 65
    distributed training and inference. It also support the dynamic graph and
    static graph at the same time.

    Args:
        model (paddle.nn.Layer, optional): The model is an instance of
            paddle.nn.Layer.
        loss (Loss|Callable|None, optional): The loss can be a `paddle.nn.Layer`
66 67
            instance or any callable function taken the predicted values and
            ground truth values as input. It can be None when there is no loss.
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
            Default: None.
        optimizer (Optimizer|None, optional): The optimizer need to be set in training
            and should be None in eval and predict mode. Default: None.
        metrics (Metric|list[Metric]|None, optional): If metrics is set, all
            metrics will be calculated and output in train/eval mode. Default: None.
        cluster (Cluster|None, optional): The cluster represents the topology information
            about the used physical devices. Default: None. (Unused for now)
        strategy (Strategy|None, optional): The strategy is used to configure the
        parallelization and optimization behaviors. Default: None.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.vision.transforms as T
84
            from paddle.distributed.fleet import auto
85 86 87 88 89 90 91 92 93 94
            from paddle.vision.datasets import MNIST

            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
            train_dataset = MNIST(mode='train', transform=transform)
            valid_dataset = MNIST(mode='test', transform=transform)

            model = paddle.vision.models.LeNet()
95
            loss = paddle.nn.CrossEntropyLoss()
96 97 98 99
            optimizer = paddle.optimizer.Adam(
                learning_rate=0.001, parameters=model.parameters())
            metrics = paddle.metric.Accuracy(topk=(1, 2))

100 101
            engine = auto.Engine(model, loss, optimizer, metrics)
            # fit
102 103 104
            engine.fit(train_dataset,
                       epochs=2,
                       batch_size=64)
105
            # evaluate
106 107 108 109 110 111 112
            engine.evaluate(valid_dataset,
                            batch_size=64)
            # predict
            engine.predict(valid_dataset,
                           batch_size=64)
            # save
            engine.save("./my_model")
113
            # load
114 115 116
            engine.load("./my_model")

    """
117

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    def __init__(
        self,
        model=None,
        loss=None,
        optimizer=None,
        metrics=None,
        cluster=None,
        strategy=None,
    ):

        if (
            model
            and not isinstance(model, paddle.nn.Layer)
            and not callable(model)
        ):
133 134 135 136
            raise TypeError(
                "'model must be sub classes of `paddle.nn.Layer` or any callable function."
            )
        self._model = model
137 138 139 140 141 142 143 144 145

        if (
            loss
            and not isinstance(loss, (paddle.nn.Layer, Variable))
            and not callable(loss)
        ):
            raise TypeError(
                "'loss' must be sub classes of `paddle.nn.Layer` or any callable function or a Variable."
            )
146 147 148
        self._loss = loss

        if optimizer and not isinstance(
149
            optimizer,
150
            (paddle.optimizer.Optimizer, paddle.static.Optimizer),
151
        ):
152 153
            raise TypeError(
                "'optimizer' must be object of class `paddle.optimizer.Optimizer`"
154
                " or `paddle.static.Optimizer`."
155
            )
156
        self._optimizer = auto_utils.validate_opt(optimizer)
157 158

        metrics = metrics or []
159
        for metric in auto_utils.to_list(metrics):
160 161 162 163 164 165
            if metric and not isinstance(metric, Metric):
                raise TypeError(
                    "{} is not sub class of Metric".format(
                        metric.__class__.__name__
                    )
                )
166
        self._metrics = auto_utils.to_list(metrics)
167 168 169 170 171 172 173 174 175 176 177 178 179

        if cluster and not isinstance(cluster, Cluster):
            raise TypeError(
                "'cluster' must be the object or class `paddle.distributed.auto_parallel.Cluster`"
            )
        self._cluster = cluster or get_default_cluster()

        if strategy and not isinstance(strategy, Strategy):
            raise TypeError(
                "'strategy' must be object of class `paddle.distributed.auto_parallel.Strategy`"
            )
        self._strategy = strategy or Strategy()

180
        self._logger = get_logger(logging.INFO)
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197

        self._json_config = None
        if cluster:
            self._cluster = cluster
        else:
            if os.getenv("PADDLE_AUTO_PARALLEL_CONFIG"):
                try:
                    path = os.getenv("PADDLE_AUTO_PARALLEL_CONFIG")
                    with open(path, "r") as f:
                        self._json_config = json.load(f)
                except Exception as e:
                    self._logger.info(
                        "Load json failed, please check json file, engine will run default config."
                    )
                    self._json_config = None
            self._cluster = get_default_cluster(self._json_config)

198
        if os.getenv("POD_NAME"):
199 200
            self._logger.info(
                "Distribute training by paddle.distributed.launch"
201
            )
202
            fleet.init(is_collective=True)
203

204 205 206 207 208 209
        # for compute cost
        # TODO: remove _fwd_main_progs and _orig_optimizer
        self._fwd_dist_contexts = {}
        self._fwd_main_progs = {}
        self._orig_optimizer = copy.deepcopy(self._optimizer)

210
        self._executor = None
211 212 213
        self._cur_rank = paddle.distributed.get_rank()
        self._nranks = paddle.distributed.get_world_size()
        self._saver = DistributedSaver()
214

215 216
        self._orig_main_prog = static.default_main_program()
        self._orig_startup_prog = static.default_startup_program()
217
        self._orig_dist_context = get_default_distributed_context()
218
        self._dist_contexts = {}
219
        self._planners = {}
220 221
        self._has_prepared = {"train": False, "eval": False, "predict": False}
        self._has_prepared_reader = {
222 223
            "train": False,
            "eval": False,
224
            "predict": False,
225
        }
226 227 228 229
        self._inputs_spec = []
        self._labels_spec = []
        self._inputs = []
        self._labels = []
230
        self._losses = []
231

232
        self._mode = None
233 234
        self._skip_build = False
        self._outside_dataloader = False
235
        self._planned_mode = None
236 237
        self._dygraph_mode = False
        self._tuning = self._strategy.tuning
238

Z
zhaoyingli 已提交
239 240
        self.history = None

241 242
        paddle.framework.set_flags({'FLAGS_new_executor_sequential_run': 1})

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    def _prepare_data_spec(self, data, split, batch_size):
        inputs_spec = []
        labels_spec = []
        if isinstance(data, paddle.io.IterableDataset):
            if split is None:
                inputs, labels = next(iter(data))
            else:
                sample = next(iter(data))
                inputs = sample[:split]
                labels = sample[split:]
        elif isinstance(data, paddle.io.Dataset):
            if split is None:
                inputs, labels = data[0]
            else:
                sample = data[0]
                inputs = sample[:split]
                labels = sample[split:]
        else:
261
            raise TypeError(
C
chenxujun 已提交
262
                "Data should be a Dataset or IterableDataset, but received {}.".format(
263 264 265
                    type(data).__name__
                )
            )
266 267
        inputs = auto_utils.to_list(inputs)
        labels = auto_utils.to_list(labels)
268 269

        num_shards = self._strategy.dataset.num_shards
270

271 272 273 274 275 276 277 278 279 280 281 282
        def _adjust_item_spec(num_shards, spec):
            if num_shards > 1 and len(spec.shape) > 1:
                spec.shape[0] = spec.shape[0] * num_shards

        def _infer_item_spec(item, name, batch_size, specs):
            if isinstance(item, np.ndarray):
                spec = InputSpec.from_numpy(item, name)
                if batch_size is None:
                    _adjust_item_spec(num_shards, spec)
                    specs.append(spec)
                else:
                    specs.append(spec.batch(batch_size))
W
wanghuancoder 已提交
283
            elif isinstance(item, (Variable, core.eager.Tensor)):
284
                spec = InputSpec.from_tensor(item, name)
285
                _adjust_item_spec(num_shards, spec)
286 287 288 289
                if batch_size is None:
                    specs.append(spec)
                else:
                    specs.append(spec.batch(batch_size))
290
            elif isinstance(item, numbers.Number):
291
                specs.append(InputSpec([batch_size], type(item), name))
292 293 294 295 296 297
            else:
                raise TypeError(
                    "The sample's dtype returned of dataset should be number, np.ndarray or Tensor, but got {}".format(
                        type(item).__name__
                    )
                )
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313

        if inputs is not None:
            for i, item in enumerate(inputs):
                assert item is not None, "Receive None input."
                name = "input" + str(i)
                _infer_item_spec(item, name, batch_size, inputs_spec)
        if labels is not None:
            for i, item in enumerate(labels):
                assert item is not None, "Receive None input."
                name = "label" + str(i)
                _infer_item_spec(item, name, batch_size, labels_spec)

        inputs_spec = self._validate_spec(inputs_spec)
        labels_spec = self._validate_spec(labels_spec)
        return inputs_spec, labels_spec

314
    def _prepare_data_tensor(self, inputs_spec, labels_spec, inputs, labels):
315
        if in_dygraph_mode() or self._dygraph_mode:
316 317
            raise ValueError("Only support static graph mode.")

318
        if inputs_spec:
319 320 321 322 323
            assert isinstance(
                inputs_spec, list
            ), "inputs should be list, but received {}".format(
                type(inputs_spec)
            )
324 325
            assert isinstance(
                inputs, list
326
            ), f"inputs should be list, but received {type(inputs)}"
327 328 329 330 331 332
            assert len(inputs_spec) == len(
                inputs
            ), "the number of `inputs_spec` should be equal to `inputs`'s."
            for input_spec, input in zip(inputs_spec, inputs):
                if input_spec.shape != input.shape:
                    input.desc.set_shape(input_spec.shape)
333
        if labels_spec:
334 335 336 337 338
            assert isinstance(
                labels_spec, list
            ), "labels should be list, but received {}".format(
                type(labels_spec)
            )
339 340
            assert isinstance(
                labels, list
341
            ), f"labels should be list, but received {type(labels)}"
342 343 344 345 346 347 348
            assert len(labels_spec) == len(
                labels
            ), "the number of `labels_spec` should be equal to `labels`'s."
            for label_spec, label in zip(labels_spec, labels):
                if label_spec.shape != label.shape:
                    label.desc.set_shape(label_spec.shape)

349 350
        return inputs, labels

351
    def _prepare_reader(self, feed_list=[]):
352
        dist_context = self._dist_contexts[self._mode]
353
        dist_main_prog = dist_context.dist_main_programs[self._cur_rank]
354 355 356 357
        dist_main_block = dist_main_prog.global_block()

        # NOTE: this list may be changed if Paddle changes the existing rules.
        related_reader_ops = [
358 359 360
            "create_py_reader",
            "create_double_buffer_reader",
            "read",
361 362 363 364 365 366 367 368 369 370 371 372 373
        ]
        # remove the first three ops if multiple run fit/evaluate/predict
        if dist_main_block.ops[0].type == 'create_py_reader':
            for i in range(len(related_reader_ops)):
                if dist_main_block.ops[0].type in related_reader_ops:
                    dist_main_block._remove_op(0, sync=False)
        dist_main_block._sync_with_cpp()
        # Step 1: find the reader ops
        reader_op_indices = []
        for idx, op in enumerate(dist_main_block.ops):
            if op.type in related_reader_ops:
                reader_op_indices.append(idx)
        # Step 2: insert the new reader ops to cpp
374 375
        # record the read ops' desc to insert to program of forward task_node
        read_ops_desc = []
376 377 378 379
        new_reader_ops = []
        for idx in reversed(reader_op_indices):
            new_op_desc = dist_main_block.desc._prepend_op()
            new_op_desc.copy_from(dist_main_block.ops[idx].desc)
380
            read_ops_desc.append(new_op_desc)
381 382 383
            new_op = Operator(
                dist_main_block, new_op_desc, type=new_op_desc.type()
            )
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
            new_reader_ops.append(new_op)
            dist_op = DistributedOperator(new_op)
            dist_context.add_dist_op_for_program(dist_op)
        # Step 3: insert the new reader ops to python
        for new_op in new_reader_ops:
            dist_main_block.ops.insert(0, new_op)
        for i in range(len(reader_op_indices)):
            reader_op_indices[i] += len(reader_op_indices)
        # Step 4: remove the old reader ops from python and cpp
        for idx in reversed(reader_op_indices):
            op = dist_main_block.ops.pop(idx)
            dist_main_block.desc._remove_op(idx, idx + 1)
        dist_main_block._sync_with_cpp()
        self._has_prepared_reader[self._mode] = True

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
        # Insert read op to forward TaskNode if 1F1B pass is setted
        if self.main_program._pipeline_opt:
            assert "tasks" in self.main_program._pipeline_opt["fleet_opt"]
            fleet_opt = self.main_program._pipeline_opt["fleet_opt"]
            fwd_task = fleet_opt["tasks"][0]
            fwd_prog = fwd_task.get_program()
            fwd_block = fwd_prog.global_block()

            for var in feed_list:
                if var.name not in fwd_block.vars:
                    fwd_block._clone_variable(var)

            for op_desc in read_ops_desc:
                new_op_desc = fwd_block.desc._prepend_op()
                new_op_desc.copy_from(op_desc)
                new_op = Operator(
                    fwd_block, new_op_desc, type=new_op_desc.type()
                )
                fwd_block.ops.insert(0, new_op)

            fwd_block._sync_with_cpp()
            fwd_task.set_program(fwd_prog)

422 423 424 425 426
    def _prepare_feed(self, data, user_feeds, mode):
        feeds = {}
        if data is not None:
            if isinstance(data, (list, tuple)):
                if len(data) == 1 and isinstance(data[0], dict):
427 428
                    for name, value in data[0].items():
                        feeds[name] = value
429
                else:
430
                    raise ValueError(f"Unsupported data {data}")
431
            elif isinstance(data, dict):
432 433
                for name, value in data.items():
                    feeds[name] = value
434
            else:
435
                raise ValueError(f"Unsupported data {data}")
436
        if user_feeds is not None:
437 438 439 440 441
            assert isinstance(
                user_feeds, dict
            ), "user_feeds must be a dict, but receive {}".format(
                type(user_feeds).__name__
            )
442 443
            for name, data in user_feeds.items():
                feeds[name] = data
444 445
        return feeds

446
    def _prepare_fetch(self, user_fetches, mode):
447
        if user_fetches is not None:
448 449 450 451 452
            assert isinstance(
                user_fetches, list
            ), "user_fetches must be a list, but receive {}".format(
                type(user_fetches).__name__
            )
453 454
        else:
            user_fetches = []
455
        fetch_names = []
456
        fetch_indices = []
457

458 459
        def _process_fetch_group(group_name, var_list):
            group_indices = []
460
            for var in var_list:
461 462 463 464 465 466
                # Remove duplicate var_names
                if self._is_local_var(var):
                    var_name = _to_name_str(var)
                    if var_name not in fetch_names:
                        fetch_names.append(var_name)
                    group_indices.append(fetch_names.index(var_name))
467 468
            if not group_indices:
                fetch_names.append([])
469 470
            fetch_indices.append(group_indices)

471 472
        dist_context = self._dist_contexts[mode]
        fetch_vars = dist_context.serial_fetch_vars
473
        if mode != "predict":
474
            _process_fetch_group("loss", fetch_vars["loss"])
475
        if mode != "predict":
476
            metrics = fetch_vars["metrics"]
477 478 479
            for i, var_list in enumerate(metrics):
                _process_fetch_group("metrics_" + str(i), var_list)
        if mode == "predict":
480
            _process_fetch_group("outputs", fetch_vars["outputs"])
481 482 483
        for usr_fetch in user_fetches:
            var_name = _to_name_str(usr_fetch)
            fetch(var_name)
484 485 486
        user_fetches_collection = [
            item[1] for item in get_collection(CollectionNames.FETCHES)
        ]
487
        var_list = user_fetches_collection or []
488 489 490
        _process_fetch_group("fetches", var_list)
        return fetch_names, fetch_indices

491 492 493 494 495 496 497 498 499 500
    def _prepare_logger(
        self,
        outs,
        epoch=None,
        step=None,
        lr=None,
        fetch_names=None,
        fetch_indices=None,
        mode=None,
    ):
Z
zhaoyingli 已提交
501
        logs = {}
502
        if epoch is not None:
Z
zhaoyingli 已提交
503
            logs["epoch"] = epoch
504
        if step is not None:
Z
zhaoyingli 已提交
505
            logs["step"] = step + 1
506
        if lr is not None:
Z
zhaoyingli 已提交
507
            logs["lr"] = lr
508 509
        group_idx = 0
        if mode != "predict":
Z
zhaoyingli 已提交
510
            # logging loss
511
            loss_indices = fetch_indices[group_idx]
Z
zhaoyingli 已提交
512
            assert len(loss_indices) <= 1
513
            for idx in loss_indices:
Z
zhaoyingli 已提交
514
                logs["loss"] = outs[idx][0]
515
            group_idx += 1
Z
zhaoyingli 已提交
516
            # logging metrics
517 518
            dist_context = self._dist_contexts[mode]
            metric_vars = dist_context.serial_fetch_vars["metrics"]
519 520 521 522 523 524 525 526 527
            if metric_vars:
                for metric in self._metrics:
                    metrics_indices = fetch_indices[group_idx]
                    metric_out = []
                    for idx in metrics_indices:
                        metric_out.append(outs[idx])
                    if metric_out:
                        metric.update(*metric_out)
                        results = metric.accumulate()
528
                        for i, res in enumerate(auto_utils.to_list(results)):
Z
zhaoyingli 已提交
529
                            logs[metric.name()[i]] = res
530
                    group_idx += 1
Z
zhaoyingli 已提交
531 532 533 534 535 536 537
        # logging outputs
        elif mode == "predict":
            outputs_indices = fetch_indices[group_idx]
            logs_out = {}
            for idx in outputs_indices:
                logs_out["out%d" % (idx)] = outs[idx]
            logs["outputs"] = logs_out
538 539
            group_idx += 1
        # logging user fetches
Z
zhaoyingli 已提交
540 541
        collect_fetches = get_collection(CollectionNames.FETCHES)
        logs_fetch = {}
542 543 544 545
        for name, var_name in collect_fetches:
            if var_name in fetch_names:
                idx = fetch_names.index(var_name)
                logs_fetch[name or var_name] = outs[idx]
Z
zhaoyingli 已提交
546 547
        logs["fetches"] = logs_fetch
        return logs
548

549
    def _prepare_program(self, mode, init_parameters=True):
550 551 552 553 554 555
        # Do the build process
        self._build(mode)
        # Do the planning process
        self._plan(mode)
        # Do the parallel process
        self._parallel(mode)
556 557 558 559 560
        # Init comm
        self._init_comm()
        if init_parameters:
            # startup program
            self._initialize(mode)
561 562
        self._has_prepared[mode] = True

563
    def _build(self, mode):
564
        if in_dygraph_mode() or self._dygraph_mode:
565
            paddle.disable_static()
566 567 568
            self._dygraph_mode = True
            self._logger.info("Building model with 'to_static' method.")

569
            self.program_helper = ProgramHelper(
570 571 572 573 574
                self._model,
                self._loss,
                self._metrics,
                self._inputs_spec,
                self._labels_spec,
575
            )
576
            # build forward main program
577 578
            with utils.unique_name.guard():
                self.program_helper.build_program(mode)
579

580 581 582
            self.concrete_program = self.program_helper.concrete_program
            serial_main_prog = self.program_helper.main_program
            serial_startup_prog = self.program_helper.startup_program
583

584 585
            self._inputs = self.program_helper.input_vars
            self._labels = self.program_helper.label_vars
586
            outputs = self.program_helper.output_vars
587
            self._losses = self.program_helper.loss_vars
588
            metrics = self.program_helper.metric_vars
589

590
            paddle.enable_static()
591
        else:
592 593 594
            # build program in static mode
            dist_context = self._dist_contexts.get(mode, None)
            if dist_context is not None:
595 596
                return

597
            outputs = []
598
            metrics = []
599
            self._losses = []
600 601
            serial_main_prog = self._orig_main_prog.clone()
            serial_startup_prog = self._orig_startup_prog.clone()
602
            if not self._skip_build:
603 604 605
                with static.program_guard(
                    serial_main_prog, serial_startup_prog
                ), utils.unique_name.guard():
606 607 608 609 610 611 612
                    self._inputs = [
                        s._create_feed_layer() for s in self._inputs_spec
                    ]
                    self._labels = [
                        s._create_feed_layer() for s in self._labels_spec
                    ]

613
                    outputs = auto_utils.to_list(self._model(*self._inputs))
614

615
                    if mode != "predict" and self._loss:
616 617 618 619 620
                        assert isinstance(
                            self._loss, paddle.nn.Layer
                        ) or callable(
                            self._loss
                        ), "the type of `loss` of the Engine arguments should be sub classes of `paddle.nn.Layer` or any callable function."
621
                        self._losses = auto_utils.to_list(
622 623
                            self._loss(*(outputs + self._labels))
                        )
624

625
                    if mode != "predict" and (outputs or self._labels):
626 627
                        for metric in self._metrics:
                            metrics.append(
628
                                auto_utils.to_list(
629 630
                                    metric.compute(*(outputs + self._labels))
                                )
631
                            )
Z
zhaoyingli 已提交
632
            elif mode == "train":
633 634 635
                assert isinstance(
                    self._loss, Variable
                ), "the type of `loss` of the Engine arguments should be Variable."
636
                self._losses = auto_utils.to_list(self._loss)
637 638 639 640 641 642 643

        default_ctx = get_default_distributed_context()
        if not default_ctx.has_annotation:
            # We build the world process group because the data parallel
            # needs all ranks by default.
            new_process_group(list(range(self._nranks)))
            default_ctx.data_parallel = True
644 645 646 647 648 649
            self._inputs = [
                auto_utils.set_data_parallel(var) for var in self._inputs
            ]
            self._labels = [
                auto_utils.set_data_parallel(var) for var in self._labels
            ]
650

651
        feed_vars = {"inputs": self._inputs, "labels": self._labels}
652 653

        fetch_vars = {
654
            "outputs": paddle.utils.flatten(outputs),
655
            "loss": self._losses,
656
            "metrics": metrics,
657 658
        }

659 660 661
        if mode != "train":
            serial_main_prog = serial_main_prog.clone(for_test=True)

662 663 664
        auto_utils.set_recompute_segments(
            self._model, self._losses, self._strategy, serial_main_prog
        )
665
        self._dist_contexts[mode] = DistributedContext(
666 667 668
            serial_main_prog,
            serial_startup_prog,
            self._optimizer,
669 670 671 672 673
            self._losses,
            feed_vars,
            fetch_vars,
            self._cluster,
            self._strategy,
674
            self._json_config,
675 676 677 678 679 680
        )
        self._fwd_dist_contexts[mode] = DistributedContext(
            serial_main_prog,
            serial_startup_prog,
            self._optimizer,
            self._losses,
681 682 683 684
            feed_vars,
            fetch_vars,
            self._cluster,
            self._strategy,
685
            self._json_config,
686
        )
687
        self._dist_contexts[mode].gradient_scale = self._strategy.gradient_scale
688
        self._fwd_main_progs[mode] = serial_main_prog.clone()
689

690 691 692
    def _optimization_tuning(self, mode, dataset, batch_size):
        if not self._tuning.enable:
            raise ValueError("Please set `tuning.enable=True`.")
693

694 695 696 697 698 699 700 701
        assert mode == "train"
        # Do the build process
        self._build(mode)
        # Do the planning process
        self._plan(mode)

        dataset.dp_world_size = self._dp_world_sizes
        dataset.dp_rank = self._dp_ranks
702 703

        from .tuner.optimization_tuner import OptimizationTuner
704 705 706 707 708 709 710 711 712

        self._optimization_tuner = OptimizationTuner(
            self._dist_contexts[mode],
            dataset,
            self._inputs_spec,
            self._labels_spec,
            batch_size=batch_size,
            rank=self._cur_rank,
        )
713 714 715

        self._optimization_tuner.tune()

716
        if self._tuning.run_after_tuning:
717 718
            # update the strategy
            self._dist_contexts[
719 720
                mode
            ]._strategy = self._optimization_tuner.get_best_config()
721

722 723 724 725 726 727
    def _plan(self, mode):
        if self._planned_mode is None:
            self._planned_mode = mode
        else:
            self._init_dist_context(mode)

728 729
        self._planners[mode] = Planner(mode, self._dist_contexts[mode])
        self._planners[mode].plan()
730

731 732 733 734
        # infer data parallel info
        inputs_var = self._dist_contexts[mode].serial_feed_vars["inputs"]
        labels_var = self._dist_contexts[mode].serial_feed_vars["labels"]
        block = self._dist_contexts[mode].serial_main_program.global_block()
735
        # TODO: check this feed_list
736 737 738 739 740
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in block.vars:
                feed_list.append(block.vars[var.name])

741 742
        self._dp_world_sizes = []
        self._dp_ranks = []
743
        for feed_var in feed_list:
744
            dp_world_size, dp_rank = auto_utils.get_input_split_info(
745
                self._cur_rank, feed_var, self._dist_contexts[mode]
746
            )
747 748
            self._dp_world_sizes.append(dp_world_size)
            self._dp_ranks.append(dp_rank)
749

750
    def _parallel(self, mode, all_ranks=False):
751 752
        # Parallelize program based on the planner's results
        # For now, the completer has to be passed to the planner,
C
chenxujun 已提交
753
        # because we may use it to complete the annotation of the backward and update.
754
        parallelizer = Parallelizer(
Y
yuehuayingxueluo 已提交
755 756 757
            mode,
            self._planners[mode].completer,
            self._dist_contexts[mode],
758
        )
759 760 761 762
        if not all_ranks:
            parallelizer.parallel(self._cur_rank)
        else:
            parallelizer.parallel_all()
763 764

    def _init_dist_context(self, mode):
765
        # Init dist_context['mode'] with the first planned dist_context
766 767 768 769 770 771 772 773 774 775
        # to guarantee that train/eval/predict mode have same parallel strategy
        dist_context = self._dist_contexts[mode]
        origin_main_prog = dist_context._original_serial_main_program
        ref_mode = self._planned_mode
        ref_dist_context = self._dist_contexts[ref_mode]
        ref_origin_main_prog = ref_dist_context._original_serial_main_program
        ref_blocks = ref_origin_main_prog.blocks
        for ib, block in enumerate(origin_main_prog.blocks):
            for iop, op in enumerate(block.ops):
                ref_op = ref_blocks[ib].ops[iop]
776 777 778 779 780 781 782 783
                assert (
                    op.type == ref_op.type
                ), "'{}' mode op '{}' is different with '{}' op '{}'. ".format(
                    mode, op.type, ref_mode, ref_op.type
                )
                ref_op_dist_attr = (
                    ref_dist_context.get_op_dist_attr_for_program(ref_op)
                )
784 785
                dist_context.set_op_dist_attr_for_program(op, ref_op_dist_attr)

786
    def _init_comm(self):
787 788 789 790
        if self._nranks > 1:
            # Traverse different rank programs and traverse each op of them,
            # instantiate communication by process_mapping.
            all_process_groups = get_all_process_groups()
791

792
            if self._strategy.auto_mode == "full_random":
793
                auto_utils.initialize_pg_in_full_mode(
794
                    all_process_groups, self._cur_rank
795
                )
796 797
            else:
                for process_group in all_process_groups:
798
                    if self._cur_rank not in process_group.ranks:
799 800
                        continue
                    process_group.instantiate()
801

802
    def _initialize(self, mode):
803
        self._place = _get_device()
804
        if isinstance(self._place, paddle.framework.CUDAPlace):
805 806 807
            self._place = paddle.framework.CUDAPlace(
                paddle.distributed.ParallelEnv().dev_id
            )
808

809 810 811 812 813
        if self._strategy.seed:
            paddle.seed(self._strategy.seed + self._dp_ranks[0])
            np.random.seed(self._strategy.seed + self._dp_ranks[0])
            random.seed(self._strategy.seed + self._dp_ranks[0])

814
        dist_context = self._dist_contexts[mode]
815
        if self._dygraph_mode:
816
            dist_main_program = dist_context.dist_main_programs[self._cur_rank]
817 818 819
            self.program_helper.init(
                dist_main_program, self._place, dist_context
            )
820

821
        if self._executor is None:
822
            self._executor = paddle.static.Executor(self._place)
823
            uninitialized = []
824 825 826
            dist_startup_prog = dist_context.dist_startup_programs[
                self._cur_rank
            ]
827 828 829 830 831 832 833 834
            for var in dist_startup_prog.list_vars():
                scope_var = global_scope().find_var(var.name)
                if scope_var and scope_var.get_tensor()._is_initialized():
                    continue
                uninitialized.append(var)
            if uninitialized:
                prune_startup_prog = dist_startup_prog._prune(uninitialized)
                self._executor.run(prune_startup_prog)
835

836
            if hasattr(self, "_state_dict") and hasattr(self, "_dist_attr"):
837 838 839
                self._set_state_dict(
                    mode, self._strict, self._state_dict, self._dist_attr
                )
840 841

        if self._strategy.reinit:
Z
zhaoyingli 已提交
842
            self._logger.info("NOTE: parameters will be re-initialized.")
843 844 845
            dist_startup_prog = dist_context.dist_startup_programs[
                self._cur_rank
            ]
846 847
            self._executor.run(dist_startup_prog)

848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
    def fit(
        self,
        train_data,
        train_sample_split=None,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        log_freq=10,
        save_dir=None,
        save_freq=1,
        valid_data=None,
        valid_sample_split=None,
        valid_freq=1,
        valid_steps=None,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
866 867 868 869 870 871 872 873
        """
        Trains the model for a fixed number of epochs. If `valid_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
            train_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            train_sample_split (int, optional): Each sample of the train dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
874
                more than two items, train_sample_split specifies how to split these items into
875
                input and label. The items before it are input and the left are label. Default: None.
876
            batch_size (int, optional): The batch size of train_data and valid_data if provided.
877 878 879
                The user's data will be used directly without batching if set to None. Default: 1.
            epochs (int, optional): The number of epochs to train the model. Default: 1.
            steps_per_epoch (int, optional): The total number of steps (batches of samples)
880
                is executed in one epoch before stating the next one. If None, it is equal to
881 882
                the number samples in your dataset divided by the batch size. Default: None.
            valid_data (Dataset, optional): An instance of paddle paddle.io.Dataset used for
883
                evaluation at the end of epoch. No evaluation will be done if set to None.
884
                Default: None. (Unsupported for now)
885
            valid_freq (int, optional): Only relevant if valid_data is provided. This specifies
886 887
                how many training epochs before a new evaluation is performed. Default: 1.
            valid_sample_split (int, optional): Only relevant if valid_data is provided.
888 889
                Each sample of the valid dataset is assumed to be a (input, label) pair
                by default and has two items. If each sample has more than two items,
890 891 892
                valid_sample_split specifies how to split these items into input and label.
                The items before it are input and the left are label. Default: None.
            valid_steps (int, optional): Only relevant if valid_data is provided.
893 894
                It is the total number of steps (batches of samples) to draw before
                stopping validation at the end of every epoch. If None, validation will run until the
895 896 897 898
                `valid_data` dataset is exhausted. The validation will start from the
                beginning of the dataset at each epoch. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
899
                0. Default None.
900 901 902 903 904 905 906 907 908 909 910 911
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during training. Default: None. (Unused for now)

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
912
                from paddle.distributed.fleet import auto
913 914 915 916 917 918 919 920 921
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
922
                loss = paddle.nn.CrossEntropyLoss()
923 924 925 926
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

927
                engine = auto.Engine(model, loss, optimizer, metrics)
928 929 930 931
                engine.fit(train_dataset,
                           epochs=2,
                           batch_size=64)
        """
932 933
        self._mode = 'train'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
934 935
            train_data, train_sample_split, batch_size
        )
936 937
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
938
        else:
939
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
940

941 942 943 944 945 946 947
        train_dataloader = self._prepare_dataloader_from_generator(
            dataset=train_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
948 949
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
950

951
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
Z
zhaoyingli 已提交
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977

        cbks = config_callbacks(
            callbacks,
            engine=self,
            batch_size=batch_size,
            epochs=epochs,
            steps=train_dataloader._steps,
            log_freq=log_freq,
            save_freq=save_freq,
            save_dir=save_dir,
            verbose=verbose,
            metrics=self._metrics_name(),
            acc_step=self._k_steps,
        )

        cbks.on_begin('train')
        for epoch in range(epochs):
            logs = {}
            cbks.on_epoch_begin(epoch)
            for step, _ in enumerate(train_dataloader):
                cbks.on_batch_begin('train', step, logs)
                try:
                    outs = self._executor.run(
                        self.main_program,
                        fetch_list=fetch_names,
                        use_program_cache=self._strategy.use_cache,
978 979
                        return_numpy=self._strategy.return_numpy,
                    )
Z
zhaoyingli 已提交
980 981
                except core.EOFException:
                    break
982
                lr = auto_utils.get_lr(self._optimizer)
983 984 985 986 987 988 989 990 991
                logs = self._prepare_logger(
                    outs,
                    epoch,
                    step,
                    lr,
                    fetch_names,
                    fetch_indices,
                    self._mode,
                )
Z
zhaoyingli 已提交
992 993 994
                cbks.on_batch_end('train', step, logs)

            if valid_data and (epoch + 1) % valid_freq == 0:
995 996 997 998 999 1000 1001 1002 1003 1004
                val_logs = self.evaluate(
                    valid_data,
                    valid_sample_split,
                    batch_size,
                    valid_steps,
                    log_freq,
                    collate_fn,
                    callbacks,
                    verbose,
                )
Z
zhaoyingli 已提交
1005
                val_logs = {
1006
                    "val_" + name: val for name, val in val_logs.items()
Z
zhaoyingli 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
                }
                logs.update(val_logs)
                self._switch_mode("train")
            else:
                self._reset_metrics()

            cbks.on_epoch_end(epoch, logs)

        cbks.on_end('train', logs)
        return self.history
1017

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
    def evaluate(
        self,
        valid_data,
        valid_sample_split=None,
        batch_size=1,
        steps=None,
        log_freq=10,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
1029 1030 1031 1032
        """
        Evaluate the loss and metrics of the model on evaluation data.

        Args:
1033 1034
            valid_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            valid_sample_split (int, optional): Each sample of the eval dataset is assumed
1035
                to be a (input, label) pair by default and has two items. If each sample has
1036
                more than two items, valid_sample_split specifies how to split these items into
1037
                input and label. The items before it are input and the left are label. Default: None.
1038
            batch_size (int, optional): The batch size of valid_data. The user's data will
1039
                be used directly without batching if set to None. Default: 1.
1040 1041
            steps (int, optional): It is the total number of steps (batches of samples) to draw before
                stopping evaluation. If None, evaluation will run until the `valid_data` dataset is exhausted.
1042 1043 1044 1045 1046
                The evaluation will start from the beginning of the dataset in each run. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
1047
                during evaluating. Default: None. (Unused for now)
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
1058
                from paddle.distributed.fleet import auto
1059 1060 1061 1062 1063 1064 1065 1066 1067
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                valid_dataset = MNIST(mode='test', transform=transform)

                model = paddle.vision.models.LeNet()
1068
                loss = paddle.nn.CrossEntropyLoss()
1069 1070
                metrics = paddle.metric.Accuracy(topk=(1, 2))

1071
                engine = auto.Engine(model, loss, metrics=metrics)
1072 1073 1074
                engine.evaluate(valid_dataset, batch_size=64)

        """
1075 1076
        self._mode = 'eval'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1077 1078
            valid_data, valid_sample_split, batch_size
        )
1079 1080
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
1081
        else:
1082
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
1083

1084 1085 1086 1087 1088 1089
        valid_dataloader = self._prepare_dataloader_from_generator(
            dataset=valid_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            steps_per_epoch=steps,
1090 1091
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
1092

1093
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
1094

Z
zhaoyingli 已提交
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
        cbks = config_callbacks(
            callbacks,
            engine=self,
            batch_size=batch_size,
            log_freq=log_freq,
            verbose=verbose,
            metrics=self._metrics_name(),
        )

        eval_steps = valid_dataloader._steps
1105 1106 1107
        cbks.on_begin(
            'eval', {'steps': eval_steps, 'metrics': self._metrics_name()}
        )
Z
zhaoyingli 已提交
1108
        logs = {}
1109
        for step, _ in enumerate(valid_dataloader):
Z
zhaoyingli 已提交
1110
            cbks.on_batch_begin('eval', step, logs)
1111
            try:
1112 1113
                outs = self._executor.run(
                    self.main_program,
1114
                    fetch_list=fetch_names,
1115
                    use_program_cache=self._strategy.use_cache,
1116 1117
                    return_numpy=self._strategy.return_numpy,
                )
1118
            except core.EOFException:
1119
                break
1120 1121 1122
            logs = self._prepare_logger(
                outs, None, step, None, fetch_names, fetch_indices, self._mode
            )
Z
zhaoyingli 已提交
1123 1124
            cbks.on_batch_end('eval', step, logs)
        cbks.on_end('eval', logs)
1125
        self._reset_metrics()
Z
zhaoyingli 已提交
1126
        return logs
1127

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
    def predict(
        self,
        test_data,
        test_sample_split=None,
        batch_size=1,
        steps=None,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
1138 1139 1140 1141 1142 1143 1144
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            test_sample_split (int, optional): Each sample of the test dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
1145
                more than two items, test_sample_split specifies how to split these items into
1146 1147 1148
                input and label. The items before it are input and the left are label. Default: None.
            batch_size (int, optional): The batch size of test_data. The user's data will
                be used directly without batching if set to None. Default: 1.
1149 1150
            steps (int, optional): It is the total number of steps (batches of samples) to draw before
                stopping predict. If None, predict will run until the `test_data` dataset is exhausted.
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
                The predict will start from the beginning of the dataset in each run. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during testing. Default: None. (Unused for now)

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
1167
                from paddle.distributed.fleet import auto
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                valid_dataset = MNIST(mode='test', transform=transform)

                model = paddle.vision.models.LeNet()

1178
                engine = auto.Engine(model)
1179 1180
                engine.predict(valid_dataset, batch_size=64)
        """
1181 1182
        self._mode = 'predict'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1183 1184
            test_data, test_sample_split, batch_size
        )
1185 1186
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
1187
        else:
1188
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
1189

1190 1191 1192 1193 1194 1195
        test_dataloader = self._prepare_dataloader_from_generator(
            dataset=test_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            steps_per_epoch=steps,
1196 1197
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
1198

1199
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
1200

Z
zhaoyingli 已提交
1201 1202 1203 1204 1205
        outputs = []
        cbks = config_callbacks(callbacks, engine=self, verbose=verbose)
        test_steps = test_dataloader._steps
        cbks.on_begin('predict', {'steps': test_steps})
        logs = {}
1206
        for step, _ in enumerate(test_dataloader):
Z
zhaoyingli 已提交
1207
            cbks.on_batch_begin('predict', step, logs)
1208
            try:
1209 1210
                outs = self._executor.run(
                    self.main_program,
1211
                    fetch_list=fetch_names,
1212
                    use_program_cache=self._strategy.use_cache,
1213 1214
                    return_numpy=self._strategy.return_numpy,
                )
1215
            except core.EOFException:
1216
                break
1217 1218 1219
            logs = self._prepare_logger(
                outs, None, step, None, fetch_names, fetch_indices, self._mode
            )
Z
zhaoyingli 已提交
1220 1221 1222 1223 1224
            cbks.on_batch_end('predict', step, logs)
            outputs.append(list(logs["outputs"].values()))
        cbks.on_end('predict', logs)
        return outputs

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
    def dataloader(
        self,
        dataset,
        batch_size=1,
        shuffle=False,
        drop_last=False,
        collate_fn=None,
        num_workers=0,
        use_buffer_reader=True,
        use_shared_memory=True,
        timeout=0,
        worker_init_fn=None,
        epochs=1,
        steps_per_epoch=None,
        sample_split=1,
        mode=None,
    ):
1242 1243 1244
        if mode is not None:
            self.to_mode(mode)
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1245 1246
            dataset, sample_split, batch_size
        )
1247 1248
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
1249
        else:
1250
            self._switch_mode(self._mode)
1251

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
        dataloader = self._prepare_dataloader(
            dataset,
            return_list=False,
            batch_size=batch_size,
            shuffle=shuffle,
            drop_last=drop_last,
            collate_fn=collate_fn,
            num_workers=num_workers,
            use_buffer_reader=use_buffer_reader,
            use_shared_memory=use_shared_memory,
            timeout=timeout,
            worker_init_fn=worker_init_fn,
            epochs=epochs,
1265 1266
            steps_per_epoch=steps_per_epoch,
        )
1267 1268
        return dataloader

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
    def dataloader_from_generator(
        self,
        dataset,
        capacity=70,
        use_double_buffer=True,
        iterable=True,
        use_multiprocess=False,
        drop_last=True,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        collate_fn=None,
        sample_split=1,
        mode=None,
    ):
1284 1285 1286
        if mode is not None:
            self.to_mode(mode)
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1287 1288
            dataset, sample_split, batch_size
        )
1289 1290 1291 1292
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
        else:
            self._switch_mode(self._mode)
1293

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
        dataloader = self._prepare_dataloader_from_generator(
            dataset=dataset,
            capacity=capacity,
            use_double_buffer=use_double_buffer,
            iterable=iterable,
            return_list=False,
            use_multiprocess=use_multiprocess,
            drop_last=drop_last,
            batch_size=batch_size,
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
1305 1306
            collate_fn=collate_fn,
        )
1307 1308
        return dataloader

1309 1310 1311 1312 1313 1314 1315 1316 1317
    def prepare(
        self,
        inputs_spec=None,
        labels_spec=None,
        inputs=None,
        labels=None,
        main_program=None,
        startup_program=None,
        mode=None,
1318
        init_parameters=True,
1319
    ):
1320 1321
        if mode is not None:
            self.to_mode(mode)
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337

        if not self._mode:
            raise ValueError(
                "Please set mode to be prepared with `prepare(mode=...)`"
            )

        if self._has_prepared[self._mode]:
            return

        inputs_spec = self._validate_spec(inputs_spec)
        labels_spec = self._validate_spec(labels_spec)
        inputs = self._validate_vars(inputs)
        labels = self._validate_vars(labels)

        self._orig_main_prog = main_program
        self._orig_startup_prog = startup_program
1338 1339
        if inputs or labels:
            self._skip_build = True
1340 1341
            inputs, labels = self._prepare_data_tensor(
                inputs_spec, labels_spec, inputs, labels
1342
            )
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
            if self._orig_main_prog is None:
                self._orig_main_prog = static.default_main_program()
            if self._orig_startup_prog is None:
                self._orig_startup_prog = static.default_startup_program()
        elif inputs_spec or labels_spec:
            self._outside_dataloader = True
            if self._orig_main_prog is None:
                self._orig_main_prog = static.default_main_program()
            if self._orig_startup_prog is None:
                self._orig_startup_prog = static.default_startup_program()
        else:
1354 1355 1356
            assert (
                self._inputs_spec and self._labels_spec
            ), "Please call the dataloader(...) before calling prepare(...)"
1357

1358 1359 1360
        self._inputs_spec, self._labels_spec = inputs_spec, labels_spec
        self._inputs, self._labels = inputs, labels
        if not self._has_prepared[self._mode]:
1361
            self._prepare_program(self._mode, init_parameters)
1362 1363 1364
        else:
            self._switch_mode(self._mode)

1365
    def run(self, data=None, feed=None, fetch_list=None, mode=None):
1366 1367 1368 1369
        if mode is not None:
            self.to_mode(mode)
        feed_dict = self._prepare_feed(data, feed, self._mode)
        fetch_names, fetch_indices = self._prepare_fetch(fetch_list, self._mode)
1370 1371 1372 1373
        if (
            self._outside_dataloader
            and not self._has_prepared_reader[self._mode]
        ):
1374
            self._prepare_reader()
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
        outs = self._executor.run(
            self.main_program,
            feed=feed_dict,
            fetch_list=fetch_names,
            use_program_cache=self._strategy.use_cache,
            return_numpy=self._strategy.return_numpy,
        )
        logs = self._prepare_logger(
            outs, None, None, None, fetch_names, fetch_indices, self._mode
        )
Z
zhaoyingli 已提交
1385
        return logs
1386

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
    def _prepare_dataloader(
        self,
        dataset,
        return_list=True,
        batch_size=1,
        shuffle=False,
        drop_last=False,
        collate_fn=None,
        num_workers=0,
        use_buffer_reader=True,
        use_shared_memory=True,
        timeout=0,
        worker_init_fn=None,
        epochs=1,
        steps_per_epoch=None,
    ):
1403

1404
        if self._strategy.gradient_merge and batch_size is not None:
1405 1406 1407 1408 1409
            assert (
                batch_size % self._k_steps == 0
            ), "Requires batch_size:[{}] to be divisible by k_steps:[{}].".format(
                batch_size, self._k_steps
            )
1410
            batch_size //= self._k_steps
1411

1412 1413 1414
        dist_context = self._dist_contexts[self._mode]
        dist_main_prog = dist_context.dist_main_programs[self._cur_rank]
        dist_startup_prog = dist_context.dist_startup_programs[self._cur_rank]
1415
        dist_main_block = dist_main_prog.global_block()
1416

1417 1418 1419 1420
        # NOTE: Get feed_list, then insert dataloader op with sharded var shape.
        # Cause predict_program does not contain labels var,
        # then we will add labels var from serial_program to dist_program,
        # that maintains the length of feed_list equal to the length of dataset's values.
1421 1422
        inputs_var = dist_context.serial_feed_vars["inputs"]
        labels_var = dist_context.serial_feed_vars["labels"]
1423 1424 1425 1426
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
1427 1428 1429 1430
            else:
                copy_var = dist_main_block._clone_variable(var, var.persistable)
                copy_var.desc.set_original_id(var.desc.original_id())
                feed_list.append(copy_var)
1431 1432

        # insert read op at the end of program
1433
        places = paddle.static.cuda_places()
1434
        with static.program_guard(dist_main_prog, dist_startup_prog):
1435
            dataloader = DistributedDataLoader(
1436
                dataset,
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
                feed_list=feed_list,
                places=places,
                return_list=return_list,
                batch_size=batch_size,
                shuffle=shuffle,
                drop_last=drop_last,
                collate_fn=collate_fn,
                num_workers=num_workers,
                use_buffer_reader=use_buffer_reader,
                use_shared_memory=use_shared_memory,
                timeout=timeout,
                worker_init_fn=worker_init_fn,
                epochs=epochs,
                steps_per_epoch=steps_per_epoch,
                split_data=self._strategy.split_data,
1452
                data_parallel_world_size=self._dp_world_sizes,
1453 1454
                data_parallel_rank=self._dp_ranks,
            )
1455

1456 1457
        return dataloader

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
    def _prepare_dataloader_from_generator(
        self,
        dataset,
        capacity=None,
        use_double_buffer=True,
        iterable=True,
        return_list=False,
        use_multiprocess=False,
        drop_last=True,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        collate_fn=None,
    ):
1472 1473

        if self._strategy.gradient_merge and batch_size is not None:
1474 1475 1476 1477 1478
            assert (
                batch_size % self._k_steps == 0
            ), "Requires batch_size:[{}] to be divisible by k_steps:[{}].".format(
                batch_size, self._k_steps
            )
1479 1480
            batch_size //= self._k_steps

1481 1482 1483
        dist_context = self._dist_contexts[self._mode]
        dist_main_prog = dist_context.dist_main_programs[self._cur_rank]
        dist_startup_prog = dist_context.dist_startup_programs[self._cur_rank]
1484 1485 1486 1487 1488 1489
        dist_main_block = dist_main_prog.global_block()

        # NOTE: Get feed_list, then insert dataloader op with sharded var shape.
        # Cause predict_program does not contain labels var,
        # then we will add labels var from serial_program to dist_program,
        # that maintains the length of feed_list equal to the length of dataset's values.
1490 1491
        inputs_var = dist_context.serial_feed_vars["inputs"]
        labels_var = dist_context.serial_feed_vars["labels"]
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
            else:
                copy_var = dist_main_block._clone_variable(var, var.persistable)
                copy_var.desc.set_original_id(var.desc.original_id())
                feed_list.append(copy_var)

        places = paddle.static.cuda_places()
        with static.program_guard(dist_main_prog, dist_startup_prog):
            dataloader = DistributedDataLoaderFromGenerator(
                dataset=dataset,
                feed_list=feed_list,
                capacity=capacity,
                use_double_buffer=use_double_buffer,
                iterable=iterable,
                return_list=return_list,
                use_multiprocess=use_multiprocess,
                drop_last=drop_last,
                places=places,
                batch_size=batch_size,
                epochs=epochs,
                steps_per_epoch=steps_per_epoch,
                collate_fn=collate_fn,
                split_data=self._strategy.split_data,
                data_parallel_world_size=self._dp_world_sizes,
1519 1520
                data_parallel_rank=self._dp_ranks,
            )
1521
        self._prepare_reader(feed_list)
1522 1523 1524 1525 1526
        return dataloader

    def _tune(self, tune_data, tune_sample_split=None, batch_size=1):
        self._mode = 'train'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1527 1528
            tune_data, tune_sample_split, batch_size
        )
1529 1530
        self._optimization_tuning(self._mode, tune_data, batch_size)

1531
    def _validate_spec(self, specs):
1532
        specs = auto_utils.to_list(specs)
1533
        self._k_steps = self._strategy.gradient_merge.k_steps
1534 1535
        if specs is not None:
            for i, spec in enumerate(specs):
1536 1537 1538 1539
                if not isinstance(spec, InputSpec):
                    raise TypeError(
                        "'spec' must be object of class `paddle.static.InputSpec`."
                    )
1540 1541
                if spec.name is None:
                    raise ValueError(
1542 1543 1544 1545
                        "Requires Input[{}].name != None, but receive `None` with {}.".format(
                            i, spec
                        )
                    )
1546
                if self._k_steps > 1:
1547
                    shape = list(spec.shape)
1548 1549 1550 1551 1552
                    assert (
                        shape[0] % self._k_steps == 0
                    ), "Requires batch_size[{}] to be divisible by k_steps[{}].".format(
                        spec.shape[0], self._k_steps
                    )
1553
                    shape[0] //= self._k_steps
1554
                    spec.shape = shape
1555 1556 1557
        return specs or []

    def _validate_vars(self, vars):
1558
        vars = auto_utils.to_list(vars)
1559 1560 1561 1562 1563
        if vars is not None:
            for i, var in enumerate(vars):
                if not isinstance(var, Variable):
                    raise TypeError("'var' must be a `Variable`.")
        return vars or []
1564

1565 1566 1567 1568
    def _is_local_var(self, var):
        var_name = _to_name_str(var)
        return var_name in self.main_program.global_block().vars

1569 1570 1571 1572
    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

Z
zhaoyingli 已提交
1573 1574 1575
    def _metrics_name(self):
        metrics_name = ['loss'] if self._loss else []
        for m in self._metrics:
1576
            metrics_name.extend(auto_utils.to_list(m.name()))
Z
zhaoyingli 已提交
1577 1578
        return metrics_name

1579
    def _switch_mode(self, mode):
1580
        assert (
1581
            mode in self._dist_contexts
1582
        ), f"{mode} model is not ready, please call `prepare()` first."
1583
        self.to_mode(mode)
Z
zhaoyingli 已提交
1584
        self._optimizer = self._dist_contexts[mode]._serial_optimizer
1585

1586
    def to_mode(self, mode):
1587 1588 1589 1590
        assert mode in [
            "train",
            "eval",
            "predict",
1591
        ], f"mode {mode} should be one of ['train', 'eval', 'predict']"
1592 1593
        self._mode = mode

1594 1595
    def _set_state_dict(self, mode, strict, state_dict, dist_attr):
        dist_context = self._dist_contexts[mode]
1596
        program = dist_context.dist_main_programs[self._cur_rank]
1597
        cur_dist_attr = auto_utils.get_dist_attr(program, dist_context)
1598 1599
        converter = Converter(state_dict, dist_attr, cur_dist_attr)
        state_dict = converter.convert(strict=strict)
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
        for name, param in program.state_dict().items():
            param_array = np.array(param)
            if name not in state_dict:
                continue
            if param_array.dtype != state_dict[name].dtype:
                self._logger.info(
                    "cast {}'s dtype from '{}' to '{}'".format(
                        name,
                        str(state_dict[name].dtype),
                        str(param_array.dtype),
                    )
                )
                state_dict[name] = state_dict[name].astype(param_array.dtype)
1613 1614 1615
        program.set_state_dict(state_dict)

    def save(self, path, training=True):
1616 1617
        """
        Saves the model, parameters, optimizer state to path.
1618 1619 1620 1621 1622 1623 1624
        If `training` is set to False, only inference model will be saved.

        Args:
            path (str): The file prefix to save model. The format
                is 'dirname/file_prefix' or 'file_prefix'. if empty str.
                A exception will be raised.
            training (bool, optional): Whether to save for training. If not, save
1625
                for inference only. If `training` is set to True, the optimizer state
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
                will be saved. Otherwise, only the model and parameters are saved.
                This function will silently overwrite existing file at the target
                location. Default: True.

        Returns:
            None

        Examples:

            .. code-block:: python
                import paddle
                import paddle.vision.transforms as T
1638
                from paddle.distributed.fleet import auto
1639 1640 1641 1642 1643 1644 1645 1646 1647
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
1648
                loss = paddle.nn.CrossEntropyLoss()
1649 1650 1651 1652
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

1653
                engine = auto.Engine(model, loss, optimizer, metrics)
1654 1655 1656 1657
                engine.fit(train_dataset,
                           epochs=1,
                           batch_size=64)
                engine.save("./my_model")
1658

1659
        """
1660
        if training:
1661
            assert self._mode in self._dist_contexts
Z
zhaoyingli 已提交
1662
            dist_context = self._dist_contexts[self._mode]
1663 1664
            serial_program = dist_context.serial_main_program
            dist_main_prog = dist_context.dist_main_programs[self._cur_rank]
1665 1666 1667 1668 1669 1670
            self._saver.save(
                path,
                serial_program=serial_program,
                dist_main_program=dist_main_prog,
                dist_context=dist_context,
            )
1671
        else:
1672 1673 1674 1675 1676
            assert "predict" in self._dist_contexts
            dist_context = self._dist_contexts["predict"]
            feed_vars = dist_context.serial_feed_vars['inputs']
            fetch_vars = dist_context.serial_fetch_vars['outputs']
            dist_main_prog = dist_context.dist_main_programs[self._cur_rank]
1677
            if self._strategy.qat.enable and self._strategy.qat.onnx_format:
1678
                from paddle.static.quantization import QuantWeightPass
1679 1680 1681

                self._logger.info("export quantized model.")
                self._logger.info(
1682
                    f"convert config {self._strategy.qat.to_dict()}"
1683 1684 1685 1686 1687 1688 1689 1690
                )
                test_graph = IrGraph(
                    core.Graph(dist_main_prog.desc), for_test=True
                )
                quant_weight_pass = QuantWeightPass(global_scope(), self._place)
                for sub_graph in test_graph.all_sub_graphs():
                    quant_weight_pass.apply(sub_graph)
                dist_main_prog = test_graph.to_program()
1691 1692 1693 1694 1695 1696 1697
            self._saver.save_inference_model(
                path,
                feed_vars,
                fetch_vars,
                self._executor,
                program=dist_main_prog,
            )
1698

1699 1700 1701 1702 1703 1704
    def load(self, path, strict=True, load_optimizer=True):
        """
        Load the stored model, parameters and optimizer states.

        Args:
            path (str): The prefix of files storing the model states and
1705
                optimizer states.
1706 1707 1708
            strict (bool, optional): Whether to skip the loading of mismatch
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
1709
                mismatch shape). Default: True.
1710
            load_optimizer (bool, optional): If True, the stored optimizer
1711
                states is restored. Otherwise, the optimizer states is initialized
1712
                from scratch. Default: True.
1713 1714 1715 1716 1717 1718 1719 1720 1721

        Returns:
            None

        Examples:

            .. code-block:: python
                import paddle
                import paddle.vision.transforms as T
1722
                from paddle.distributed.fleet import auto
1723 1724 1725 1726 1727 1728 1729 1730 1731
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
1732
                loss = paddle.nn.CrossEntropyLoss()
1733 1734 1735 1736
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

1737
                engine = auto.Engine(model, loss, optimizer, metrics)
1738 1739 1740 1741 1742
                engine.fit(train_dataset,
                           epochs=1,
                           batch_size=64)
                engine.save("./my_model")
                engine.load("./my_model")
1743

1744 1745 1746
        """
        self._strict = strict
        self._state_dict, self._dist_attr = self._saver.load(
1747 1748
            path, load_optimizer
        )
1749
        return self._state_dict, self._dist_attr
1750

1751
    def cost(self, inputs_spec=None, labels_spec=None, mode=None):
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
        """
        Get and Print cost, including memory of every rank,
        max memory among all ranks, and the global cost of one step based on
        communication cost(computation cost is 0 by default).
        In the future, the flops information of every rank and global cost including
        computation cost will be added.

        Args:
            inputs_spec(InputSpec): The specification of inputs. Default: None.
            labels_spec(InputSpec): The specification of labels. Default: None.
1762
            mode (str): The engine mode must be in ["train", "predict", "eval"]. Default: None.
1763 1764 1765 1766 1767 1768 1769

        Returns:
            Return the global execution time (ms) and max memory (B).

        """
        # Check parallel mode
        if self._strategy.auto_mode == "full":
1770
            self._logger.info(
1771 1772 1773 1774 1775
                "The cost will be calcudated in the search process when the auto mode is full."
            )
            return

        # Check mode
1776 1777 1778
        mode = mode if mode is not None else self._mode
        assert mode is not None, "Please set mode."
        if mode not in self._has_prepared:
1779 1780
            raise ValueError(
                "The mode {} is not in accepted modes {}".format(
1781
                    mode, list(self._has_prepared.keys())
1782 1783
                )
            )
1784 1785
        self.to_mode(mode)

1786 1787 1788
        if inputs_spec is not None and not self._has_prepared[mode]:
            self._inputs_spec = self._validate_spec(inputs_spec)
            self._labels_spec = self._validate_spec(labels_spec)
1789 1790 1791
            self._build(mode)
            self._plan(mode)
        else:
1792
            if in_dygraph_mode() or self._dygraph_mode:
1793
                raise ValueError(
1794 1795 1796 1797 1798
                    "Please call `prepare()` or `fit()` or  `evaluate()` or  `predict()` before calling `cost()`."
                )
            else:
                self._logger.info(
                    "The program whose cost to be estimated must be static default program. Otherwise, please call `prepare()`before calling `cost()`."
1799
                )
1800 1801 1802 1803 1804 1805 1806 1807
                program = paddle.static.default_main_program()
                if (
                    not program.global_block().ops
                    or not program.global_block().ops
                ) and not self._has_prepared[mode]:
                    raise ValueError(
                        "Please call `prepare()` or `fit()` or  `evaluate()` or  `predict()` before calling `cost()`."
                    )
1808 1809 1810 1811 1812 1813

        # Estimate the exec cost and max memory
        global_cost, max_memory = get_cost_from_engine(self, mode)

        return global_cost.time, max_memory

1814 1815
    @property
    def main_program(self):
1816 1817
        dist_context = self._dist_contexts[self._mode]
        return dist_context.dist_main_programs[self._cur_rank]
1818 1819 1820

    @property
    def startup_program(self):
1821 1822
        dist_context = self._dist_contexts[self._mode]
        return dist_context.dist_startup_programs[self._cur_rank]
1823 1824 1825

    @property
    def dist_context(self):
1826
        return self._dist_contexts[self._mode]
1827 1828 1829

    @property
    def serial_main_program(self):
1830 1831
        dist_context = self._dist_contexts[self._mode]
        return dist_context.serial_main_program
1832 1833 1834

    @property
    def serial_startup_program(self):
1835 1836 1837 1838 1839 1840 1841
        dist_context = self._dist_contexts[self._mode]
        return dist_context.serial_startup_program

    @property
    def feed_vars(self):
        dist_context = self._dist_contexts[self._mode]
        return dist_context.serial_feed_vars
1842 1843 1844

    @property
    def fetch_vars(self):
1845 1846 1847 1848 1849 1850 1851 1852 1853
        dist_context = self._dist_contexts[self._mode]
        return dist_context.serial_fetch_vars

    @property
    def optimizer(self):
        dist_context = self._dist_contexts[self._mode]
        if dist_context._serial_optimizer:
            return dist_context._serial_optimizer
        return self._optimizer
1854 1855 1856

    @property
    def inputs(self):
1857
        return self._inputs
1858 1859 1860

    @property
    def labels(self):
1861
        return self._labels