window.py 12.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
import math
14
from typing import List, Tuple, Union
15

16 17
import numpy as np

18 19 20 21
import paddle
from paddle import Tensor


22
class WindowFunctionRegister:
23
    def __init__(self):
24
        self._functions_dict = {}
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

    def register(self, func=None):
        def add_subfunction(func):
            name = func.__name__
            self._functions_dict[name] = func
            return func

        return add_subfunction

    def get(self, name):
        return self._functions_dict[name]


window_function_register = WindowFunctionRegister()


@window_function_register.register()
42
def _cat(x: List[Tensor], data_type: str) -> Tensor:
43 44 45 46 47 48
    l = []
    for t in x:
        if np.isscalar(t) and not isinstance(t, str):
            l.append(paddle.to_tensor([t], data_type))
        else:
            l.append(paddle.to_tensor(t, data_type))
49 50 51
    return paddle.concat(l)


52
@window_function_register.register()
53 54 55 56 57 58
def _acosh(x: Union[Tensor, float]) -> Tensor:
    if isinstance(x, float):
        return math.log(x + math.sqrt(x**2 - 1))
    return paddle.log(x + paddle.sqrt(paddle.square(x) - 1))


59
@window_function_register.register()
60
def _extend(M: int, sym: bool) -> bool:
61
    """Extend window by 1 sample if needed for DFT-even symmetry."""
62 63 64 65 66 67
    if not sym:
        return M + 1, True
    else:
        return M, False


68
@window_function_register.register()
69
def _len_guards(M: int) -> bool:
70
    """Handle small or incorrect window lengths."""
71 72 73 74 75 76
    if int(M) != M or M < 0:
        raise ValueError('Window length M must be a non-negative integer')

    return M <= 1


77
@window_function_register.register()
78
def _truncate(w: Tensor, needed: bool) -> Tensor:
79
    """Truncate window by 1 sample if needed for DFT-even symmetry."""
80 81 82 83 84 85
    if needed:
        return w[:-1]
    else:
        return w


86
@window_function_register.register()
87 88 89
def _general_gaussian(
    M: int, p, sig, sym: bool = True, dtype: str = 'float64'
) -> Tensor:
90 91 92 93
    """Compute a window with a generalized Gaussian shape.
    This function is consistent with scipy.signal.windows.general_gaussian().
    """
    if _len_guards(M):
94
        return paddle.ones((M,), dtype=dtype)
95 96 97
    M, needs_trunc = _extend(M, sym)

    n = paddle.arange(0, M, dtype=dtype) - (M - 1.0) / 2.0
98
    w = paddle.exp(-0.5 * paddle.abs(n / sig) ** (2 * p))
99 100 101 102

    return _truncate(w, needs_trunc)


103
@window_function_register.register()
104 105 106
def _general_cosine(
    M: int, a: float, sym: bool = True, dtype: str = 'float64'
) -> Tensor:
107 108 109 110
    """Compute a generic weighted sum of cosine terms window.
    This function is consistent with scipy.signal.windows.general_cosine().
    """
    if _len_guards(M):
111
        return paddle.ones((M,), dtype=dtype)
112 113
    M, needs_trunc = _extend(M, sym)
    fac = paddle.linspace(-math.pi, math.pi, M, dtype=dtype)
114
    w = paddle.zeros((M,), dtype=dtype)
115 116 117 118 119
    for k in range(len(a)):
        w += a[k] * paddle.cos(k * fac)
    return _truncate(w, needs_trunc)


120
@window_function_register.register()
121 122 123
def _general_hamming(
    M: int, alpha: float, sym: bool = True, dtype: str = 'float64'
) -> Tensor:
124 125 126
    """Compute a generalized Hamming window.
    This function is consistent with scipy.signal.windows.general_hamming()
    """
127
    return _general_cosine(M, [alpha, 1.0 - alpha], sym, dtype=dtype)
128 129


130
@window_function_register.register()
131 132 133
def _taylor(
    M: int, nbar=4, sll=30, norm=True, sym: bool = True, dtype: str = 'float64'
) -> Tensor:
134 135 136 137 138
    """Compute a Taylor window.
    The Taylor window taper function approximates the Dolph-Chebyshev window's
    constant sidelobe level for a parameterized number of near-in sidelobes.
    """
    if _len_guards(M):
139
        return paddle.ones((M,), dtype=dtype)
140 141 142 143
    M, needs_trunc = _extend(M, sym)
    # Original text uses a negative sidelobe level parameter and then negates
    # it in the calculation of B. To keep consistent with other methods we
    # assume the sidelobe level parameter to be positive.
144
    B = 10 ** (sll / 20)
145
    A = _acosh(B) / math.pi
146
    s2 = nbar**2 / (A**2 + (nbar - 0.5) ** 2)
147 148
    ma = paddle.arange(1, nbar, dtype=dtype)

149
    Fm = paddle.empty((nbar - 1,), dtype=dtype)
150 151 152 153 154
    signs = paddle.empty_like(ma)
    signs[::2] = 1
    signs[1::2] = -1
    m2 = ma * ma
    for mi in range(len(ma)):
155 156 157
        numer = signs[mi] * paddle.prod(
            1 - m2[mi] / s2 / (A**2 + (ma - 0.5) ** 2)
        )
158
        if mi == 0:
159
            denom = 2 * paddle.prod(1 - m2[mi] / m2[mi + 1 :])
160 161 162
        elif mi == len(ma) - 1:
            denom = 2 * paddle.prod(1 - m2[mi] / m2[:mi])
        else:
163 164 165 166 167
            denom = (
                2
                * paddle.prod(1 - m2[mi] / m2[:mi])
                * paddle.prod(1 - m2[mi] / m2[mi + 1 :])
            )
168 169 170 171 172 173

        Fm[mi] = numer / denom

    def W(n):
        return 1 + 2 * paddle.matmul(
            Fm.unsqueeze(0),
174 175
            paddle.cos(2 * math.pi * ma.unsqueeze(1) * (n - M / 2.0 + 0.5) / M),
        )
176 177 178 179 180 181 182 183 184 185 186

    w = W(paddle.arange(0, M, dtype=dtype))

    # normalize (Note that this is not described in the original text [1])
    if norm:
        scale = 1.0 / W((M - 1) / 2)
        w *= scale
    w = w.squeeze()
    return _truncate(w, needs_trunc)


187
@window_function_register.register()
188 189 190 191 192 193 194 195
def _hamming(M: int, sym: bool = True, dtype: str = 'float64') -> Tensor:
    """Compute a Hamming window.
    The Hamming window is a taper formed by using a raised cosine with
    non-zero endpoints, optimized to minimize the nearest side lobe.
    """
    return _general_hamming(M, 0.54, sym, dtype=dtype)


196
@window_function_register.register()
197 198 199 200 201 202 203 204
def _hann(M: int, sym: bool = True, dtype: str = 'float64') -> Tensor:
    """Compute a Hann window.
    The Hann window is a taper formed by using a raised cosine or sine-squared
    with ends that touch zero.
    """
    return _general_hamming(M, 0.5, sym, dtype=dtype)


205
@window_function_register.register()
206 207 208
def _tukey(
    M: int, alpha=0.5, sym: bool = True, dtype: str = 'float64'
) -> Tensor:
209 210 211 212
    """Compute a Tukey window.
    The Tukey window is also known as a tapered cosine window.
    """
    if _len_guards(M):
213
        return paddle.ones((M,), dtype=dtype)
214 215

    if alpha <= 0:
216
        return paddle.ones((M,), dtype=dtype)
217
    elif alpha >= 1.0:
218
        return _hann(M, sym=sym)
219 220 221 222 223

    M, needs_trunc = _extend(M, sym)

    n = paddle.arange(0, M, dtype=dtype)
    width = int(alpha * (M - 1) / 2.0)
224 225 226
    n1 = n[0 : width + 1]
    n2 = n[width + 1 : M - width - 1]
    n3 = n[M - width - 1 :]
227 228 229

    w1 = 0.5 * (1 + paddle.cos(math.pi * (-1 + 2.0 * n1 / alpha / (M - 1))))
    w2 = paddle.ones(n2.shape, dtype=dtype)
230 231 232 233
    w3 = 0.5 * (
        1
        + paddle.cos(math.pi * (-2.0 / alpha + 1 + 2.0 * n3 / alpha / (M - 1)))
    )
234 235 236 237 238
    w = paddle.concat([w1, w2, w3])

    return _truncate(w, needs_trunc)


239
@window_function_register.register()
240 241 242
def _gaussian(
    M: int, std: float, sym: bool = True, dtype: str = 'float64'
) -> Tensor:
243 244 245 246
    """Compute a Gaussian window.
    The Gaussian widows has a Gaussian shape defined by the standard deviation(std).
    """
    if _len_guards(M):
247
        return paddle.ones((M,), dtype=dtype)
248 249 250 251
    M, needs_trunc = _extend(M, sym)

    n = paddle.arange(0, M, dtype=dtype) - (M - 1.0) / 2.0
    sig2 = 2 * std * std
252
    w = paddle.exp(-(n**2) / sig2)
253 254 255 256

    return _truncate(w, needs_trunc)


257
@window_function_register.register()
258 259 260 261
def _exponential(
    M: int, center=None, tau=1.0, sym: bool = True, dtype: str = 'float64'
) -> Tensor:
    """Compute an exponential (or Poisson) window."""
262 263 264
    if sym and center is not None:
        raise ValueError("If sym==True, center must be None.")
    if _len_guards(M):
265
        return paddle.ones((M,), dtype=dtype)
266 267 268 269 270 271 272 273 274 275 276
    M, needs_trunc = _extend(M, sym)

    if center is None:
        center = (M - 1) / 2

    n = paddle.arange(0, M, dtype=dtype)
    w = paddle.exp(-paddle.abs(n - center) / tau)

    return _truncate(w, needs_trunc)


277
@window_function_register.register()
278
def _triang(M: int, sym: bool = True, dtype: str = 'float64') -> Tensor:
279
    """Compute a triangular window."""
280
    if _len_guards(M):
281
        return paddle.ones((M,), dtype=dtype)
282 283 284 285 286 287 288 289 290 291 292 293 294
    M, needs_trunc = _extend(M, sym)

    n = paddle.arange(1, (M + 1) // 2 + 1, dtype=dtype)
    if M % 2 == 0:
        w = (2 * n - 1.0) / M
        w = paddle.concat([w, w[::-1]])
    else:
        w = 2 * n / (M + 1.0)
        w = paddle.concat([w, w[-2::-1]])

    return _truncate(w, needs_trunc)


295
@window_function_register.register()
296 297 298 299 300
def _bohman(M: int, sym: bool = True, dtype: str = 'float64') -> Tensor:
    """Compute a Bohman window.
    The Bohman window is the autocorrelation of a cosine window.
    """
    if _len_guards(M):
301
        return paddle.ones((M,), dtype=dtype)
302 303 304 305
    M, needs_trunc = _extend(M, sym)

    fac = paddle.abs(paddle.linspace(-1, 1, M, dtype=dtype)[1:-1])
    w = (1 - fac) * paddle.cos(math.pi * fac) + 1.0 / math.pi * paddle.sin(
306 307
        math.pi * fac
    )
308 309 310 311 312
    w = _cat([0, w, 0], dtype)

    return _truncate(w, needs_trunc)


313
@window_function_register.register()
314 315 316 317 318 319 320 321 322 323
def _blackman(M: int, sym: bool = True, dtype: str = 'float64') -> Tensor:
    """Compute a Blackman window.
    The Blackman window is a taper formed by using the first three terms of
    a summation of cosines. It was designed to have close to the minimal
    leakage possible.  It is close to optimal, only slightly worse than a
    Kaiser window.
    """
    return _general_cosine(M, [0.42, 0.50, 0.08], sym, dtype=dtype)


324
@window_function_register.register()
325
def _cosine(M: int, sym: bool = True, dtype: str = 'float64') -> Tensor:
326
    """Compute a window with a simple cosine shape."""
327
    if _len_guards(M):
328
        return paddle.ones((M,), dtype=dtype)
329
    M, needs_trunc = _extend(M, sym)
330
    w = paddle.sin(math.pi / M * (paddle.arange(0, M, dtype=dtype) + 0.5))
331 332 333 334

    return _truncate(w, needs_trunc)


335 336 337 338 339 340
def get_window(
    window: Union[str, Tuple[str, float]],
    win_length: int,
    fftbins: bool = True,
    dtype: str = 'float64',
) -> Tensor:
341 342 343
    """Return a window of a given length and type.

    Args:
344
        window (Union[str, Tuple[str, float]]): The window function applied to the signal before the Fourier transform. Supported window functions: 'hamming', 'hann', 'gaussian', 'general_gaussian', 'exponential', 'triang', 'bohman', 'blackman', 'cosine', 'tukey', 'taylor'.
345 346 347 348 349 350
        win_length (int): Number of samples.
        fftbins (bool, optional): If True, create a "periodic" window. Otherwise, create a "symmetric" window, for use in filter design. Defaults to True.
        dtype (str, optional): The data type of the return window. Defaults to 'float64'.

    Returns:
        Tensor: The window represented as a tensor.
Y
YangZhou 已提交
351 352 353 354

    Examples:
        .. code-block:: python

355
            >>> import paddle
Y
YangZhou 已提交
356

357 358
            >>> n_fft = 512
            >>> cosine_window = paddle.audio.functional.get_window('cosine', n_fft)
Y
YangZhou 已提交
359

360 361
            >>> std = 7
            >>> gaussian_window = paddle.audio.functional.get_window(('gaussian',std), n_fft)
362 363 364 365 366 367 368 369 370 371
    """
    sym = not fftbins

    args = ()
    if isinstance(window, tuple):
        winstr = window[0]
        if len(window) > 1:
            args = window[1:]
    elif isinstance(window, str):
        if window in ['gaussian', 'exponential']:
372 373 374 375
            raise ValueError(
                "The '" + window + "' window needs one or "
                "more parameters -- pass a tuple."
            )
376 377 378
        else:
            winstr = window
    else:
379 380 381
        raise ValueError(
            "%s as window type is not supported." % str(type(window))
        )
382 383

    try:
384 385
        winfunc = window_function_register.get('_' + winstr)
    except KeyError as e:
386 387
        raise ValueError("Unknown window type.") from e

388
    params = (win_length,) + args
389 390
    kwargs = {'sym': sym}
    return winfunc(*params, dtype=dtype, **kwargs)