activation_op.h 27.4 KB
Newer Older
Q
qijun 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Q
qijun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Q
qijun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
14 15

#pragma once
Y
Yi Wang 已提交
16 17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
Q
qijun 已提交
19 20 21 22

namespace paddle {
namespace operators {

Q
QI JUN 已提交
23
template <typename DeviceContext, typename Functor>
24 25
class ActivationKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
Q
qijun 已提交
26
 public:
27 28
  using T = typename Functor::ELEMENT_TYPE;

Q
qijun 已提交
29
  void Compute(const framework::ExecutionContext& context) const override {
Y
Update  
Yang Yu 已提交
30 31 32 33 34 35 36 37 38 39
    auto& X = detail::Ref(context.Input<framework::Tensor>("X"),
                          "Cannot get input tensor X, variable name = %s",
                          context.op().Input("X"));

    auto& Out = detail::Ref(context.Output<framework::Tensor>("Out"),
                            "Cannot get output tensor Out, variable name = %s",
                            context.op().Output("Out"));
    Out.mutable_data<T>(context.GetPlace());
    auto x = framework::EigenVector<T>::Flatten(X);
    auto out = framework::EigenVector<T>::Flatten(Out);
Q
QI JUN 已提交
40 41
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
Q
qijun 已提交
42
    Functor functor;
43 44 45 46 47

    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
F
fengjiayi 已提交
48
    functor(*place, x, out);
Q
qijun 已提交
49 50 51
  }
};

Q
QI JUN 已提交
52
template <typename DeviceContext, typename Functor>
53 54
class ActivationGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
Q
qijun 已提交
55
 public:
56
  using T = typename Functor::ELEMENT_TYPE;
Q
qijun 已提交
57 58
  void Compute(const framework::ExecutionContext& context) const override {
    auto* X = context.Input<framework::Tensor>("X");
F
fengjiayi 已提交
59 60 61
    auto* Out = context.Input<framework::Tensor>("Out");
    auto* dOut =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
Q
qijun 已提交
62 63 64
    auto* dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
    dX->mutable_data<T>(context.GetPlace());

F
fengjiayi 已提交
65
    auto dout = framework::EigenVector<T>::Flatten(*dOut);
Q
qijun 已提交
66
    auto x = framework::EigenVector<T>::Flatten(*X);
F
fengjiayi 已提交
67
    auto out = framework::EigenVector<T>::Flatten(*Out);
Q
qijun 已提交
68
    auto dx = framework::EigenVector<T>::Flatten(*dX);
Q
QI JUN 已提交
69 70
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
Q
qijun 已提交
71
    Functor functor;
72 73 74 75
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
F
fengjiayi 已提交
76
    functor(*place, x, out, dout, dx);
Q
qijun 已提交
77 78 79
  }
};

80 81 82 83 84 85 86 87 88
template <typename T>
struct BaseActivationFunctor {
  using ELEMENT_TYPE = T;

  using AttrPair = std::vector<std::pair<const char*, float*>>;

  AttrPair GetAttrs() { return AttrPair(); }
};

89
// sigmoid(x) = 1 / (1 + exp(-x))
Q
qijun 已提交
90
template <typename T>
91
struct SigmoidFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
92 93 94
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = static_cast<T>(1) / (static_cast<T>(1) + (-x).exp());
Q
qijun 已提交
95 96 97
  }
};

98
template <typename T>
99
struct SigmoidGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
100 101 102 103
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * out * (static_cast<T>(1) - out);
Q
qijun 已提交
104 105 106
  }
};

107 108 109 110
// Originally: logsigmoid(x) = -log (1 + exp(-x))
// For numerical stability, we can use the log-sum-exp trick:
// https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
// We can rewrite the above equation as:
F
fengjiayi 已提交
111
// out = -log( exp(0) + exp(-x)) [since exp(0) = 1]
112 113 114 115 116 117 118 119 120 121
//   = -log( exp(max(-x, 0) - max(-x, 0)) + exp(-x + max(-x, 0) - max(-x, 0)))
//   = -log( exp(max(-x, 0)) * exp(-max(-x, 0)) - exp(max(-x, 0)) * exp(-x -
//           max(-x, 0)))
//   = -log( exp(max(-x, 0)) * (exp(-max(-x, 0)) + exp(-x - max(-x, 0))))
//   = -log( exp(max(-x, 0)) - log(exp(-max(-x, 0)) + exp(-x - max(-x, 0)))
//
// Hence, logsigmoid(x) = - (max(-x, 0) + log(exp(-max(-x, 0))
// + exp(-x - max(-x, 0))))
template <typename T>
struct LogSigmoidFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
122 123
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
124
    auto temp = (-x).cwiseMax(static_cast<T>(0));  // temp = max(-x, 0)
F
fengjiayi 已提交
125
    out.device(d) = -temp - (((-temp).exp() + (-x - temp).exp()).log());
126 127 128 129 130 131 132 133
  }
};

// Originally: f' = exp(-x) / (1 + exp(-x))
// For numerical stability: f' = exp(-x - max(-x, 0)) / (exp(-max(-x, 0)) +
// exp(-x - max(-x, 0)))
template <typename T>
struct LogSigmoidGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
134 135 136
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
137 138
    auto temp = (-x).cwiseMax(static_cast<T>(0));  // temp = max(-x, 0)
    dx.device(d) =
F
fengjiayi 已提交
139
        dout * ((-x - temp).exp() / ((-temp).exp() + (-x - temp).exp()));
140 141 142
  }
};

Q
qijun 已提交
143
// exp(x) = e^x
144 145
template <typename T>
struct ExpFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
146 147 148
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.exp();
Q
qijun 已提交
149 150 151
  }
};

152 153
template <typename T>
struct ExpGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
154 155 156 157
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * out;
Q
qijun 已提交
158 159 160
  }
};

Q
qijun 已提交
161
// relu(x) = max(x, 0)
Q
qijun 已提交
162
template <typename T>
163
struct ReluFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
164 165 166
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.cwiseMax(static_cast<T>(0));
Q
qijun 已提交
167 168
  }
};
Q
qijun 已提交
169

Q
qijun 已提交
170
template <typename T>
171
struct ReluGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
172 173 174 175
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (x > static_cast<T>(0)).template cast<T>();
Q
qijun 已提交
176 177
  }
};
Q
qijun 已提交
178

179
// tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
180 181
template <typename T>
struct TanhFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
182 183 184
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.tanh();
Q
qijun 已提交
185 186 187 188
  }
};

template <typename T>
189
struct TanhGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
190 191 192 193
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (static_cast<T>(1) - out * out);
Q
qijun 已提交
194 195 196
  }
};

K
Kavya Srinet 已提交
197 198 199 200
// tanhshrink(x) = x - tanh(x)
// where tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
template <typename T>
struct TanhShrinkFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
201 202 203
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x - x.tanh();
K
Kavya Srinet 已提交
204 205 206 207 208
  }
};

template <typename T>
struct TanhShrinkGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
209 210 211 212
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (x.tanh() * x.tanh());
K
Kavya Srinet 已提交
213 214 215
  }
};

216 217 218 219 220 221 222 223 224
// tanhshrink(x) = x - tanh(x)
// where tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
template <typename T>
struct HardShrinkFunctor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
225 226
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
227 228
    auto temp1 = (x < static_cast<T>(threshold * -1)).template cast<T>().eval();
    auto temp2 = (x > static_cast<T>(threshold)).template cast<T>().eval();
F
fengjiayi 已提交
229
    out.device(d) = x * (temp1 + temp2);
230 231 232 233 234 235 236 237 238 239 240
  }
};

template <typename T>
struct HardShrinkGradFunctor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
241 242 243
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
244 245
    auto temp1 = (x < static_cast<T>(threshold * -1)).template cast<T>().eval();
    auto temp2 = (x > static_cast<T>(threshold)).template cast<T>().eval();
F
fengjiayi 已提交
246
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
247 248 249
  }
};

K
Kexin Zhao 已提交
250
// softshrink(x) = x - lambda, if x > lambda; x + lambda, if x < -lambda; 0
251 252 253 254 255 256 257 258
// otherwise
template <typename T>
struct SoftShrinkFunctor : public BaseActivationFunctor<T> {
  float lambda;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"lambda", &lambda}};
  }

F
fengjiayi 已提交
259 260
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
261 262 263
    auto lambdaT = static_cast<T>(lambda);
    auto temp1 = (x > lambdaT).template cast<T>().eval();
    auto temp2 = (x < -lambdaT).template cast<T>().eval();
F
fengjiayi 已提交
264
    out.device(d) = temp1 * (x - lambdaT) + temp2 * (x + lambdaT);
265 266 267 268 269 270 271 272 273
  }
};

template <typename T>
struct SoftShrinkGradFunctor : public BaseActivationFunctor<T> {
  float lambda;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"lambda", &lambda}};
  }
F
fengjiayi 已提交
274 275 276
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
277 278 279
    auto lambdaT = static_cast<T>(lambda);
    auto temp1 = (x > lambdaT).template cast<T>().eval();
    auto temp2 = (x < -lambdaT).template cast<T>().eval();
F
fengjiayi 已提交
280
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
281 282 283
  }
};

Q
qijun 已提交
284
// sqrt(x) = x^(1/2)
285 286
template <typename T>
struct SqrtFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
287 288 289
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.sqrt();
Q
qijun 已提交
290 291 292 293
  }
};

template <typename T>
294
struct SqrtGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
295 296 297 298 299
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    const Out out_conj = Eigen::numext::conj(out);
    dx.device(d) = static_cast<T>(0.5) * dout / out_conj;
Q
qijun 已提交
300 301 302
  }
};

D
dzhwinter 已提交
303 304 305
// ceil(x) = ceiling(x)
template <typename T>
struct CeilFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
306 307 308
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.ceil();
D
dzhwinter 已提交
309 310 311 312 313
  }
};

template <typename T>
struct ZeroGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
314 315 316
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
D
dzhwinter 已提交
317 318 319 320 321 322 323
    dx.device(d) = static_cast<T>(0) / x;
  }
};

// floor(x) = flooring(x)
template <typename T>
struct FloorFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
324 325
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Q
Qiao Longfei 已提交
326
    out.device(d) = x.floor();
D
dzhwinter 已提交
327 328 329 330 331 332
  }
};

// round(x) = [x]
template <typename T>
struct RoundFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
333 334 335
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.round();
D
dzhwinter 已提交
336 337 338
  }
};

Q
qijun 已提交
339
// abs(x) = |x|
340 341
template <typename T>
struct AbsFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
342 343 344
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.abs();
Q
qijun 已提交
345 346 347
  }
};

348 349
template <typename T>
struct AbsGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
350 351 352 353
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * x.sign();
354 355 356
  }
};

Q
qijun 已提交
357 358
// reciprocal(x) = 1 / x
template <typename T>
359
struct ReciprocalFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
360 361 362
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = static_cast<T>(1) / x;
Q
qijun 已提交
363 364 365
  }
};

366
template <typename T>
367
struct ReciprocalGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
368 369 370 371
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(-1) * out * out;
Q
qijun 已提交
372 373 374 375
  }
};

// log(x) = natural logarithm of x
376 377
template <typename T>
struct LogFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
378 379 380
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.log();
Q
qijun 已提交
381 382 383
  }
};

384
template <typename T>
385
struct LogGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
386 387 388 389
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (static_cast<T>(1) / x);
Q
qijun 已提交
390 391 392 393
  }
};

// square(x) = x^2
394 395
template <typename T>
struct SquareFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
396 397 398
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.square();
Q
qijun 已提交
399
  }
400
};
Q
qijun 已提交
401

402
template <typename T>
403
struct SquareGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
404 405 406 407
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(2) * x;
408 409 410
  }
};

411 412 413 414 415 416 417 418 419 420
template <typename T>
struct BReluFunctor : public BaseActivationFunctor<T> {
  float t_min;
  float t_max;

  // NOTE: Explicit hides the `BaseActivationFunctor<T>::GetAttrs`
  // not polymorphism for speed.
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"t_min", &t_min}, {"t_max", &t_max}};
  }
421

F
fengjiayi 已提交
422 423 424
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
425
        x.cwiseMax(static_cast<T>(t_min)).cwiseMin(static_cast<T>(t_max));
426 427 428
  }
};

429 430 431 432 433 434 435
template <typename T>
struct BReluGradFunctor : public BaseActivationFunctor<T> {
  float t_min;
  float t_max;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"t_min", &t_min}, {"t_max", &t_max}};
  }
F
fengjiayi 已提交
436 437 438 439
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout *
Y
Yu Yang 已提交
440 441
                   ((x > static_cast<T>(t_min)) * (x < static_cast<T>(t_max)))
                       .template cast<T>();
442 443 444
  }
};

445 446 447 448 449 450 451 452 453
// relu6(x) = min(max(0, x), 6)
template <typename T>
struct Relu6Functor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
454 455 456
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
457
        x.cwiseMax(static_cast<T>(0)).cwiseMin(static_cast<T>(threshold));
458 459 460 461 462 463 464 465 466
  }
};

template <typename T>
struct Relu6GradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
467 468 469 470
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout *
Y
Yu Yang 已提交
471 472
                   ((x > static_cast<T>(0)) * (x < static_cast<T>(threshold)))
                       .template cast<T>();
473 474 475
  }
};

K
kexinzhao 已提交
476 477 478 479 480 481 482
// softplus(x) = log(1 + exp(x))
// When x is a very large positive number, exp(x) may explode to inf,
// Using trick below for numerical stability
// https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
// Then: softplus(x) = max(x, 0) + log(exp(-max(x, 0)) + exp(x - max(x, 0)))
template <typename T>
struct SoftplusFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
483 484
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) {
K
kexinzhao 已提交
485
    auto temp = x.cwiseMax(static_cast<T>(0));  // temp = max(x, 0)
F
fengjiayi 已提交
486
    out.device(d) = temp + (((-temp).exp() + (x - temp).exp()).log());
K
kexinzhao 已提交
487 488 489 490 491 492 493 494 495
  }
};

// d(softplus(x))/dx = exp(x) / (1 + exp(x))
// For numerical stability:
// d(softplus(x))/dx = exp(x - max(x, 0)) / (exp(-max(x, 0)) +
// exp(x - max(x, 0)))
template <typename T>
struct SoftplusGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
496 497 498
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) {
K
kexinzhao 已提交
499
    auto temp = x.cwiseMax(static_cast<T>(0));  // temp = max(x, 0)
F
fengjiayi 已提交
500 501
    dx.device(d) =
        dout * ((x - temp).exp() / ((-temp).exp() + (x - temp).exp()));
K
kexinzhao 已提交
502 503 504
  }
};

505 506
// softsign(x) = x / (1 + |x|)
template <typename T>
507
struct SoftsignFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
508 509 510
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) {
    out.device(d) = x / (static_cast<T>(1) + x.abs());
511 512 513 514 515 516
  }
};

// d(softsign(x))/dx = 1 / (1 + |x|)^2
// Taken from https://en.wikipedia.org/wiki/Activation_function
template <typename T>
517
struct SoftsignGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
518 519 520
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) {
521
    dx.device(d) =
F
fengjiayi 已提交
522
        dout * (static_cast<T>(1) / (static_cast<T>(1) + x.abs()).square());
523 524 525
  }
};

526 527 528 529 530 531
template <typename T>
struct SoftReluFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
532

F
fengjiayi 已提交
533 534
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
535 536
    auto tmp = static_cast<T>(threshold);
    auto temp = x.cwiseMax(-tmp).cwiseMin(tmp);
F
fengjiayi 已提交
537
    out.device(d) = (static_cast<T>(1) + temp.exp()).log();
538 539 540
  }
};

541 542 543 544 545 546
template <typename T>
struct SoftReluGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
547 548 549
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
550 551
    auto tmp = static_cast<T>(threshold);
    auto temp = ((x > -tmp) * (x < tmp)).template cast<T>().eval();
F
fengjiayi 已提交
552
    dx.device(d) = dout * (static_cast<T>(1) - (-out).exp()) * temp;
553 554 555
  }
};

K
Kavya Srinet 已提交
556 557 558 559 560 561
template <typename T>
struct LeakyReluFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
562

F
fengjiayi 已提交
563 564 565
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.cwiseMax(static_cast<T>(alpha) * x);
566 567 568
  }
};

K
Kavya Srinet 已提交
569 570 571 572 573 574
template <typename T>
struct LeakyReluGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
F
fengjiayi 已提交
575 576 577
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
578 579
    auto temp1 = static_cast<T>(alpha) *
                 (x < static_cast<T>(0)).template cast<T>().eval();
K
Kavya Srinet 已提交
580
    auto temp2 = (x >= static_cast<T>(0)).template cast<T>().eval();
F
fengjiayi 已提交
581
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
582 583 584
  }
};

585 586 587 588 589 590
template <typename T>
struct ELUFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
591

F
fengjiayi 已提交
592 593 594 595 596
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.cwiseMax(static_cast<T>(0)) +
                    (static_cast<T>(alpha) * (x.exp() - static_cast<T>(1)))
                        .cwiseMin(static_cast<T>(0));
597 598 599
  }
};

600 601 602 603 604 605
template <typename T>
struct ELUGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
F
fengjiayi 已提交
606 607 608 609 610
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (x > static_cast<T>(0)).template cast<T>() +
                   dout * (out + static_cast<T>(alpha)) *
Y
Yu Yang 已提交
611
                       (x < static_cast<T>(0)).template cast<T>();
612 613 614
  }
};

Q
QI JUN 已提交
615
// FIXME(qijun) https://github.com/PaddlePaddle/Paddle/issues/5198
616 617 618 619 620 621
template <typename T>
struct PowFunctor : public BaseActivationFunctor<T> {
  float factor;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"factor", &factor}};
  }
F
fengjiayi 已提交
622 623 624
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.pow(static_cast<T>(factor));
625 626 627
  }
};

628 629 630 631 632 633
template <typename T>
struct PowGradFunctor : public BaseActivationFunctor<T> {
  float factor;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"factor", &factor}};
  }
F
fengjiayi 已提交
634 635 636 637
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(factor) *
Y
Yu Yang 已提交
638
                   x.pow(static_cast<T>(factor - static_cast<T>(1)));
639 640 641
  }
};

642 643 644 645 646 647 648
template <typename T>
struct STanhFunctor : public BaseActivationFunctor<T> {
  float scale_a;
  float scale_b;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }
649

F
fengjiayi 已提交
650 651 652
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
653
        static_cast<T>(scale_b) * (static_cast<T>(scale_a) * x).tanh();
654 655 656
  }
};

657 658 659 660 661 662 663
template <typename T>
struct STanhGradFunctor : public BaseActivationFunctor<T> {
  float scale_a;
  float scale_b;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }
664

F
fengjiayi 已提交
665 666 667
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
668 669 670
    auto a = static_cast<T>(scale_a);
    auto b = static_cast<T>(scale_b);
    auto temp = (a * x).tanh() * (a * x).tanh();
F
fengjiayi 已提交
671
    dx.device(d) = dout * a * b * (static_cast<T>(1) - temp);
Q
qijun 已提交
672 673 674
  }
};

675 676 677 678 679 680 681
template <typename T>
struct ThresholdedReluFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
682 683
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
684
    auto th = static_cast<T>(threshold);
F
fengjiayi 已提交
685
    out.device(d) = (x > th).template cast<T>() * x;
686 687 688 689 690 691 692 693 694 695
  }
};

template <typename T>
struct ThresholdedReluGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
696 697 698
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
699
    auto th = static_cast<T>(threshold);
F
fengjiayi 已提交
700
    dx.device(d) = dout * (x > th).template cast<T>();
701 702 703
  }
};

704 705 706 707 708 709 710 711
template <typename T>
struct HardSigmoidFunctor : public BaseActivationFunctor<T> {
  float slope;
  float offset;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }

F
fengjiayi 已提交
712 713
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
714
    auto temp = x * static_cast<T>(slope) + static_cast<T>(offset);
F
fengjiayi 已提交
715 716
    out.device(d) =
        temp.cwiseMax(static_cast<T>(0)).cwiseMin(static_cast<T>(1));
717 718 719 720 721 722 723 724 725 726 727
  }
};

template <typename T>
struct HardSigmoidGradFunctor : public BaseActivationFunctor<T> {
  float slope;
  float offset;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }

F
fengjiayi 已提交
728 729 730 731 732 733 734
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout *
                   ((out > static_cast<T>(0)) * (out < static_cast<T>(1)))
                       .template cast<T>() *
                   static_cast<T>(slope);
735 736 737
  }
};

A
Abhinav Arora 已提交
738 739 740 741 742 743 744
template <typename T>
struct SwishFunctor : public BaseActivationFunctor<T> {
  float beta;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

F
fengjiayi 已提交
745 746 747
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x / (static_cast<T>(1) + (static_cast<T>(-beta) * x).exp());
A
Abhinav Arora 已提交
748 749 750 751 752 753 754 755 756 757
  }
};

template <typename T>
struct SwishGradFunctor : public BaseActivationFunctor<T> {
  float beta;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

F
fengjiayi 已提交
758 759 760
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
A
Abhinav Arora 已提交
761 762
    auto temp1 = static_cast<T>(1) /
                 (static_cast<T>(1) + (static_cast<T>(-beta) * x).exp());
F
fengjiayi 已提交
763 764
    auto temp2 = temp1 * (static_cast<T>(1) - (beta * out));
    dx.device(d) = dout * ((beta * out) + temp2);
A
Abhinav Arora 已提交
765 766 767
  }
};

Q
qijun 已提交
768 769
}  // namespace operators
}  // namespace paddle
770

771 772 773 774 775 776 777 778 779
#define FOR_EACH_KERNEL_FUNCTOR(__macro)                             \
  __macro(sigmoid, SigmoidFunctor, SigmoidGradFunctor);              \
  __macro(logsigmoid, LogSigmoidFunctor, LogSigmoidGradFunctor);     \
  __macro(exp, ExpFunctor, ExpGradFunctor);                          \
  __macro(relu, ReluFunctor, ReluGradFunctor);                       \
  __macro(tanh, TanhFunctor, TanhGradFunctor);                       \
  __macro(softshrink, SoftShrinkFunctor, SoftShrinkGradFunctor);     \
  __macro(sqrt, SqrtFunctor, SqrtGradFunctor);                       \
  __macro(abs, AbsFunctor, AbsGradFunctor);                          \
D
dzhwinter 已提交
780 781 782
  __macro(ceil, CeilFunctor, ZeroGradFunctor);                       \
  __macro(floor, FloorFunctor, ZeroGradFunctor);                     \
  __macro(round, RoundFunctor, ZeroGradFunctor);                     \
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
  __macro(reciprocal, ReciprocalFunctor, ReciprocalGradFunctor);     \
  __macro(log, LogFunctor, LogGradFunctor);                          \
  __macro(square, SquareFunctor, SquareGradFunctor);                 \
  __macro(brelu, BReluFunctor, BReluGradFunctor);                    \
  __macro(soft_relu, SoftReluFunctor, SoftReluGradFunctor);          \
  __macro(pow, PowFunctor, PowGradFunctor);                          \
  __macro(stanh, STanhFunctor, STanhGradFunctor);                    \
  __macro(softplus, SoftplusFunctor, SoftplusGradFunctor);           \
  __macro(softsign, SoftsignFunctor, SoftsignGradFunctor);           \
  __macro(relu6, Relu6Functor, Relu6GradFunctor);                    \
  __macro(leaky_relu, LeakyReluFunctor, LeakyReluGradFunctor);       \
  __macro(tanh_shrink, TanhShrinkFunctor, TanhShrinkGradFunctor);    \
  __macro(elu, ELUFunctor, ELUGradFunctor);                          \
  __macro(hard_shrink, HardShrinkFunctor, HardShrinkGradFunctor);    \
  __macro(hard_sigmoid, HardSigmoidFunctor, HardSigmoidGradFunctor); \
A
Abhinav Arora 已提交
798
  __macro(swish, SwishFunctor, SwishGradFunctor);                    \
799
  __macro(thresholded_relu, ThresholdedReluFunctor, ThresholdedReluGradFunctor);