test_zero_dim_shape.py 5.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.fluid as fluid
import numpy as np
import unittest

unary_api_list = [
    paddle.nn.functional.elu,
    paddle.nn.functional.gelu,
    paddle.nn.functional.hardsigmoid,
    paddle.nn.functional.hardswish,
    paddle.nn.functional.leaky_relu,
    paddle.nn.functional.log_sigmoid,
    paddle.nn.functional.relu,
    paddle.nn.functional.relu6,
    paddle.nn.functional.sigmoid,
    paddle.nn.functional.softplus,
    paddle.nn.functional.softshrink,
    paddle.nn.functional.softsign,
    paddle.nn.functional.swish,
    paddle.nn.functional.tanhshrink,
    paddle.nn.functional.thresholded_relu,
    paddle.stanh,
    paddle.nn.functional.celu,
    paddle.nn.functional.mish,
    paddle.nn.functional.silu,
    paddle.nn.functional.tanh,
    paddle.cosh,
    paddle.sinh,
    paddle.abs,
    paddle.acos,
    paddle.asin,
    paddle.atan,
    paddle.ceil,
    paddle.cos,
    paddle.exp,
    paddle.floor,
    paddle.log,
    paddle.log1p,
    paddle.reciprocal,
    paddle.round,
    paddle.sin,
    paddle.sqrt,
    paddle.square,
    paddle.tanh,
    paddle.acosh,
    paddle.asinh,
    paddle.atanh,
    paddle.expm1,
    paddle.log10,
    paddle.log2,
    paddle.tan,
]


# Use to test zero-dim in the whole API
class TestUnaryAPI(unittest.TestCase):

    def test_dygraph_unary(self):
        paddle.disable_static()
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        for api in unary_api_list:
            x = paddle.rand([])
            x.stop_gradient = False
            out = api(x)
            out.backward()

            self.assertEqual(x.shape, [])
            self.assertEqual(out.shape, [])
            self.assertEqual(x.grad.shape, [])
            self.assertEqual(out.grad.shape, [])

        paddle.enable_static()

    def test_static_unary(self):
        paddle.enable_static()

        for api in unary_api_list:
            main_prog = fluid.Program()
            with fluid.program_guard(main_prog, fluid.Program()):
                x = paddle.rand([])
                x.stop_gradient = False
                out = api(x)
                fluid.backward.append_backward(out)

                # ScaleLossGradOp / append_backward always set grad shape to [1]
                prog = paddle.static.default_main_program()
                block = prog.global_block()

                x_grad = block.var(fluid.framework.grad_var_name(x.name))
                out_grad = block.var(fluid.framework.grad_var_name(out.name))

                # Test compile shape, grad is always [1]
                self.assertEqual(x.shape, ())
                self.assertEqual(out.shape, ())

                exe = fluid.Executor()
                result = exe.run(main_prog,
                                 fetch_list=[x, out, x_grad, out_grad])

                # Test runtime shape
                self.assertEqual(result[0].shape, ())
                self.assertEqual(result[1].shape, ())
                self.assertEqual(result[3].shape, (1, ))

                # 0D will be stacked when 1+ place, due to it cannot be concated
                # for 1 place: [ x-place1 ]
                # for 1+ place: [ paddle.stack([x-place1, x_place2...]) ]
                if paddle.device.is_compiled_with_cuda():
                    places = [paddle.CUDAPlace(0)]
                    device_num = 1
                    expect_shape = ()
                else:
                    places = [paddle.CPUPlace()] * 4
                    device_num = 4
                    expect_shape = (device_num, )

                compiled_program = fluid.CompiledProgram(
                    main_prog).with_data_parallel(out.name, places=places)
                result = exe.run(compiled_program,
                                 fetch_list=[x, out, x_grad, out_grad],
                                 return_merged=True)

                # Test runtime parallel shape
                self.assertEqual(result[0].shape, expect_shape)
                self.assertEqual(result[1].shape, expect_shape)
                self.assertEqual(result[3].shape, (device_num, ))

                compiled_program = fluid.CompiledProgram(
                    main_prog).with_data_parallel(out.name, places=places)
                result = exe.run(compiled_program,
                                 fetch_list=[x, out, x_grad, out_grad],
                                 return_merged=False)

                # [[x-place1, x-place2, ...], [], [], ...]
                self.assertEqual(np.array(result[0]).shape, (device_num, ))
                self.assertEqual(np.array(result[1]).shape, (device_num, ))
                self.assertEqual(np.array(result[3]).shape, (device_num, 1))

        paddle.disable_static()


if __name__ == "__main__":
    unittest.main()