test_print_op.py 5.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yan Chunwei 已提交
15
import unittest
16 17 18 19

import numpy as np

import paddle
20
import paddle.fluid as fluid
21
import paddle.fluid.layers as layers
22
from paddle.fluid import core
23
from paddle.fluid.framework import switch_main_program
24
from simple_nets import simple_fc_net, init_data
25 26 27
from paddle.static import Program, program_guard

paddle.enable_static()
Y
yangyaming 已提交
28 29 30


class TestPrintOpCPU(unittest.TestCase):
31

Y
yangyaming 已提交
32
    def setUp(self):
33 34
        self.place = paddle.CPUPlace()
        self.x_tensor = fluid.core.LoDTensor()
Y
yangyaming 已提交
35 36
        tensor_np = np.random.random(size=(2, 3)).astype('float32')
        self.x_tensor.set(tensor_np, self.place)
37
        self.x_tensor.set_recursive_sequence_lengths([[1, 1]])
Y
Yan Chunwei 已提交
38

Y
yangyaming 已提交
39 40 41
    def build_network(self, only_forward, **kargs):
        x = layers.data('x', shape=[3], dtype='float32', lod_level=1)
        x.stop_gradient = False
42 43 44
        paddle.static.Print(input=x, **kargs)
        loss = paddle.mean(x)
        paddle.static.append_backward(loss=loss)
Y
yangyaming 已提交
45
        return loss
Y
Yan Chunwei 已提交
46

Y
yangyaming 已提交
47 48 49
    def test_forward(self):
        switch_main_program(Program())
        printed = self.build_network(True, print_phase='forward')
50
        exe = paddle.static.Executor(self.place)
Y
yangyaming 已提交
51 52 53
        outs = exe.run(feed={'x': self.x_tensor},
                       fetch_list=[printed],
                       return_numpy=False)
Y
Yan Chunwei 已提交
54

Y
yangyaming 已提交
55 56 57
    def test_backward(self):
        switch_main_program(Program())
        loss = self.build_network(False, print_phase='backward')
58
        exe = paddle.static.Executor(self.place)
Y
yangyaming 已提交
59 60 61
        outs = exe.run(feed={'x': self.x_tensor},
                       fetch_list=[loss],
                       return_numpy=False)
Y
Yan Chunwei 已提交
62

63 64 65 66 67 68 69 70
    def test_all_parameters(self):
        x = layers.data('x', shape=[3], dtype='float32', lod_level=1)
        x.stop_gradient = False

        for print_tensor_name in [True, False]:
            for print_tensor_type in [True, False]:
                for print_tensor_shape in [True, False]:
                    for print_tensor_lod in [True, False]:
71
                        paddle.static.Print(
72 73 74 75
                            input=x,
                            print_tensor_name=print_tensor_name,
                            print_tensor_type=print_tensor_type,
                            print_tensor_shape=print_tensor_shape,
76 77
                            print_tensor_lod=print_tensor_lod,
                        )
78 79 80
        loss = paddle.mean(x)
        paddle.static.append_backward(loss=loss)
        exe = paddle.static.Executor(self.place)
81 82 83 84
        outs = exe.run(feed={'x': self.x_tensor},
                       fetch_list=[loss],
                       return_numpy=False)

85 86 87
    def test_no_summarize(self):
        switch_main_program(Program())
        printed = self.build_network(True, summarize=-1, print_phase='forward')
88
        exe = paddle.static.Executor(self.place)
89 90 91 92
        outs = exe.run(feed={'x': self.x_tensor},
                       fetch_list=[printed],
                       return_numpy=False)

Y
Yan Chunwei 已提交
93

94
class TestPrintOpError(unittest.TestCase):
95

96 97 98
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of Print_op must be Variable.
99 100
            x1 = fluid.create_lod_tensor(np.array([[-1]]), [[1]],
                                         paddle.CPUPlace())
101
            self.assertRaises(TypeError, paddle.static.Print, x1)
102
            # The input dtype of Print_op must be float32, float64, int32_t, int64_t or bool.
103 104
            x2 = paddle.static.data(name='x2', shape=[4], dtype="float16")
            self.assertRaises(TypeError, paddle.static.Print, x2)
105 106


107 108
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
Y
yangyaming 已提交
109
class TestPrintOpGPU(TestPrintOpCPU):
110

Y
yangyaming 已提交
111
    def setUp(self):
112 113
        self.place = paddle.CUDAPlace(0)
        self.x_tensor = fluid.core.LoDTensor()
Y
yangyaming 已提交
114 115
        tensor_np = np.random.random(size=(2, 3)).astype('float32')
        self.x_tensor.set(tensor_np, self.place)
116
        self.x_tensor.set_recursive_sequence_lengths([[1, 1]])
Y
Yan Chunwei 已提交
117 118


119
class TestPrintOpBackward(unittest.TestCase):
120

121
    def check_backward(self, use_cuda):
122 123
        main = paddle.static.Program()
        startup = paddle.static.Program()
124

125
        with program_guard(main, startup):
126
            loss = simple_fc_net()
127 128
            loss = paddle.static.Print(loss)
            paddle.optimizer.Adam().minimize(loss)
129 130 131 132

        print_ops = [op for op in main.blocks[0].ops if op.type == u'print']
        assert len(print_ops) == 2, "The number of print op should be 2"

133 134
        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
        exe = paddle.static.Executor(place)
135 136
        exe.run(startup)

137
        binary = paddle.static.CompiledProgram(main).with_data_parallel(
138 139 140 141 142 143 144
            loss_name=loss.name)

        img, label = init_data()
        feed_dict = {"image": img, "label": label}
        exe.run(binary, feed_dict)

    def test_fw_bw(self):
145
        if paddle.is_compiled_with_cuda():
146 147 148 149
            self.check_backward(use_cuda=True)
        self.check_backward(use_cuda=False)


Y
Yan Chunwei 已提交
150 151
if __name__ == '__main__':
    unittest.main()