metric_op.py 12.8 KB
Newer Older
F
fengjiayi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to metric.
"""

D
dzhwinter 已提交
18
import warnings
F
fengjiayi 已提交
19 20
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
H
hong 已提交
21
from ..framework import Variable, _non_static_mode, _varbase_creator, _in_legacy_dygraph, in_dygraph_mode
22
from .. import core
F
fengjiayi 已提交
23
from ..param_attr import ParamAttr
24
from . import nn
25
from . import tensor
26
from ..data_feeder import check_variable_and_dtype
27
from paddle import _C_ops, _legacy_C_ops
F
fengjiayi 已提交
28

D
dzhwinter 已提交
29
__all__ = ['accuracy', 'auc']
F
fengjiayi 已提交
30 31 32 33


def accuracy(input, label, k=1, correct=None, total=None):
    """
D
dzhwinter 已提交
34 35
    accuracy layer.
    Refer to the https://en.wikipedia.org/wiki/Precision_and_recall
F
fengjiayi 已提交
36
    This function computes the accuracy using the input and label.
D
dzhwinter 已提交
37 38 39
    If the correct label occurs in top k predictions, then correct will increment by one.
    Note: the dtype of accuracy is determined by input. the input and label dtype can be different.
    Args:
40
        input(Tensor): The input of accuracy layer, which is the predictions of network. A Tensor with type float32,float64.
41
            The shape is ``[sample_number, class_dim]`` .
42
        label(Tensor): The label of dataset.  Tensor with type int32,int64. The shape is ``[sample_number, 1]`` .
43
        k(int): The top k predictions for each class will be checked. Data type is int64 or int32.
44 45
        correct(Tensor): The correct predictions count. A Tensor with type int64 or int32.
        total(Tensor): The total entries count. A tensor with type int64 or int32.
D
dzhwinter 已提交
46
    Returns:
47
        Tensor: The correct rate. A Tensor with type float32.
D
dzhwinter 已提交
48 49
    Examples:
        .. code-block:: python
50
            import numpy as np
J
Jiaqi Liu 已提交
51 52 53 54 55 56 57 58 59 60 61 62
            import paddle
            import paddle.static as static
            import paddle.nn.functional as F
            paddle.enable_static()
            data = static.data(name="input", shape=[-1, 32, 32], dtype="float32")
            label = static.data(name="label", shape=[-1,1], dtype="int")
            fc_out = static.nn.fc(x=data, size=10)
            predict = F.softmax(x=fc_out)
            result = static.accuracy(input=predict, label=label, k=5)
            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())
63 64 65
            x = np.random.rand(3, 32, 32).astype("float32")
            y = np.array([[1],[0],[1]])
            output= exe.run(feed={"input": x,"label": y},
J
Jiaqi Liu 已提交
66
                        fetch_list=[result[0]])
67
            print(output)
J
Jiaqi Liu 已提交
68
            #[array([0.], dtype=float32)]
F
fengjiayi 已提交
69
    """
J
Jiabin Yang 已提交
70
    if _non_static_mode():
71
        if correct is None:
72
            correct = _varbase_creator(dtype="int32")
73
        if total is None:
74 75
            total = _varbase_creator(dtype="int32")

76
        _k = k.numpy().item(0) if isinstance(k, Variable) else k
77 78 79 80
        topk_out, topk_indices = _legacy_C_ops.top_k_v2(input, 'k', _k,
                                                        'sorted', False)
        _acc, _, _ = _legacy_C_ops.accuracy(topk_out, topk_indices, label,
                                            correct, total)
81
        return _acc
82

F
fengjiayi 已提交
83
    helper = LayerHelper("accuracy", **locals())
84 85
    check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
                             'accuracy')
86 87 88 89 90 91 92 93
    topk_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    topk_indices = helper.create_variable_for_type_inference(dtype="int64")
    inputs = {"X": [input]}
    if isinstance(k, Variable):
        inputs['K'] = [k]
    else:
        attrs = {'k': k}
    attrs['sorted'] = False
94 95 96 97 98 99 100
    helper.append_op(type="top_k_v2",
                     inputs=inputs,
                     attrs=attrs,
                     outputs={
                         "Out": [topk_out],
                         "Indices": [topk_indices]
                     })
X
Xin Pan 已提交
101
    acc_out = helper.create_variable_for_type_inference(dtype="float32")
F
fengjiayi 已提交
102
    if correct is None:
103
        correct = helper.create_variable_for_type_inference(dtype="int32")
F
fengjiayi 已提交
104
    if total is None:
105
        total = helper.create_variable_for_type_inference(dtype="int32")
106 107 108 109 110 111 112 113 114 115 116
    helper.append_op(type="accuracy",
                     inputs={
                         "Out": [topk_out],
                         "Indices": [topk_indices],
                         "Label": [label]
                     },
                     outputs={
                         "Accuracy": [acc_out],
                         "Correct": [correct],
                         "Total": [total],
                     })
F
fengjiayi 已提交
117
    return acc_out
D
dzhwinter 已提交
118 119


T
tangwei12 已提交
120 121 122 123 124
def auc(input,
        label,
        curve='ROC',
        num_thresholds=2**12 - 1,
        topk=1,
125 126 127
        slide_steps=1,
        ins_tag_weight=None):
    """
Y
Yibing Liu 已提交
128
    **Area Under the Curve (AUC) Layer**
Y
Yibing Liu 已提交
129 130

    This implementation computes the AUC according to forward output and label.
131
    It is used very widely in binary classification evaluation.
Y
Yibing Liu 已提交
132

133
    Note: If input label contains values other than 0 and 1, it will be cast
Y
Yibing Liu 已提交
134 135
    to `bool`. Find the relevant definitions `here <https://en.wikipedia.org\
    /wiki/Receiver_operating_characteristic#Area_under_the_curve>`_.
Y
Yibing Liu 已提交
136 137

    There are two types of possible curves:
Y
Yibing Liu 已提交
138 139 140

        1. ROC: Receiver operating characteristic;
        2. PR: Precision Recall
Y
Yibing Liu 已提交
141 142

    Args:
143
        input(Tensor): A floating-point 2D Tensor, values are in the range
144 145
                         [0, 1]. Each row is sorted in descending order. This
                         input should be the output of topk. Typically, this
146 147 148
                         Tensor indicates the probability of each label.
                         A Tensor with type float32,float64.
        label(Tensor): A 2D int Tensor indicating the label of the training
Y
Yibing Liu 已提交
149
                         data. The height is batch size and width is always 1.
150
                         A Tensor with type int32,int64.
Y
Yibing Liu 已提交
151
        curve(str): Curve type, can be 'ROC' or 'PR'. Default 'ROC'.
152
        num_thresholds(int): The number of thresholds to use when discretizing
153
                             the roc curve. Default 4095.
W
Wu Yi 已提交
154
        topk(int): only topk number of prediction output will be used for auc.
T
tangwei12 已提交
155
        slide_steps: when calc batch auc, we can not only use step currently but the previous steps can be used. slide_steps=1 means use the current step, slide_steps=3 means use current step and the previous second steps, slide_steps=0 use all of the steps.
156
        ins_tag_weight(Tensor): A 2D int Tensor indicating the data's tag weight, 1 means real data, 0 means fake data. Default None, and it will be assigned to a tensor of value 1.
157
                         A Tensor with type float32,float64.
Y
Yibing Liu 已提交
158 159

    Returns:
160
        Tensor: A tuple representing the current AUC.
161 162
        The return tuple is auc_out, batch_auc_out, [
        batch_stat_pos, batch_stat_neg, stat_pos, stat_neg ]
163
        Data type is Tensor, supporting float32, float64.
Y
Yibing Liu 已提交
164

165
    Examples:
Y
Yibing Liu 已提交
166
        .. code-block:: python
167

168
            import paddle
169
            import numpy as np
170
            paddle.enable_static()
171

172 173
            data = paddle.static.data(name="input", shape=[-1, 32,32], dtype="float32")
            label = paddle.static.data(name="label", shape=[-1], dtype="int")
174 175
            fc_out = paddle.static.nn.fc(x=data, size=2)
            predict = paddle.nn.functional.softmax(x=fc_out)
176 177 178 179 180 181 182 183 184 185 186
            result=paddle.static.auc(input=predict, label=label)

            place = paddle.CPUPlace()
            exe = paddle.static.Executor(place)

            exe.run(paddle.static.default_startup_program())
            x = np.random.rand(3,32,32).astype("float32")
            y = np.array([1,0,1])
            output= exe.run(feed={"input": x,"label": y},
                             fetch_list=[result[0]])
            print(output)
187

188 189
            #you can learn the usage of ins_tag_weight by the following code.
            '''
190 191
            import paddle
            import numpy as np
J
Jiaqi Liu 已提交
192
            paddle.enable_static()
193 194 195

            data = paddle.static.data(name="input", shape=[-1, 32,32], dtype="float32")
            label = paddle.static.data(name="label", shape=[-1], dtype="int")
196 197 198
            ins_tag_weight = paddle.static.data(name='ins_tag', shape=[-1,16], lod_level=0, dtype='float64')
            fc_out = paddle.static.nn.fc(x=data, size=2)
            predict = paddle.nn.functional.softmax(x=fc_out)
199
            result=paddle.static.auc(input=predict, label=label, ins_tag_weight=ins_tag_weight)
200

J
Jiaqi Liu 已提交
201
            place = paddle.CPUPlace()
202
            exe = paddle.static.Executor(place)
203

204
            exe.run(paddle.static.default_startup_program())
205 206
            x = np.random.rand(3,32,32).astype("float32")
            y = np.array([1,0,1])
207 208
            z = np.array([1,0,1])
            output= exe.run(feed={"input": x,"label": y, "ins_tag_weight":z},
209
                             fetch_list=[result[0]])
210
            print(output)
211 212
            '''

Y
Yibing Liu 已提交
213
    """
D
dzhwinter 已提交
214
    helper = LayerHelper("auc", **locals())
215 216 217 218 219

    if ins_tag_weight is None:
        ins_tag_weight = tensor.fill_constant(shape=[1, 1],
                                              dtype="float32",
                                              value=1.0)
220 221
    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'auc')
    check_variable_and_dtype(label, 'label', ['int32', 'int64'], 'auc')
222 223
    check_variable_and_dtype(ins_tag_weight, 'ins_tag_weight',
                             ['float32', 'float64'], 'auc')
X
Xin Pan 已提交
224 225
    auc_out = helper.create_variable_for_type_inference(dtype="float64")
    batch_auc_out = helper.create_variable_for_type_inference(dtype="float64")
W
Wu Yi 已提交
226
    # make tp, tn, fp, fn persistable, so that can accumulate all batches.
T
tangwei12 已提交
227 228

    # for batch auc
229 230
    # we create slide_step+1 buckets, the first slide_steps buckets store
    # historical batch-level values, and the last bucket stores the sum values of
231 232 233
    # previous slide_step buckets.
    # The index of bucket that the newest batch will use is determined by batch_id mod slide_steps,
    # and batch_id is store in the last posision of following variable
T
tangwei12 已提交
234 235 236
    batch_stat_pos = helper.create_global_variable(
        persistable=True,
        dtype='int64',
237
        shape=[(1 + slide_steps) * (num_thresholds + 1) + 1])
T
tangwei12 已提交
238 239 240
    batch_stat_neg = helper.create_global_variable(
        persistable=True,
        dtype='int64',
241
        shape=[(1 + slide_steps) * (num_thresholds + 1) + 1])
T
tangwei12 已提交
242 243

    # for global auc
244
    # Needn't maintain the batch id
245 246 247 248 249 250
    stat_pos = helper.create_global_variable(persistable=True,
                                             dtype='int64',
                                             shape=[1, num_thresholds + 1])
    stat_neg = helper.create_global_variable(persistable=True,
                                             dtype='int64',
                                             shape=[1, num_thresholds + 1])
T
tangwei12 已提交
251

T
tangwei12 已提交
252
    for var in [batch_stat_pos, batch_stat_neg, stat_pos, stat_neg]:
253 254
        helper.set_variable_initializer(var, Constant(value=0.0,
                                                      force_cpu=False))
W
Wu Yi 已提交
255

256
    #"InsTagWeight": [ins_tag_weight]
T
tangwei12 已提交
257
    # Batch AUC
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
    helper.append_op(type="auc",
                     inputs={
                         "Predict": [input],
                         "Label": [label],
                         "StatPos": [batch_stat_pos],
                         "StatNeg": [batch_stat_neg]
                     },
                     attrs={
                         "curve": curve,
                         "num_thresholds": num_thresholds,
                         "slide_steps": slide_steps
                     },
                     outputs={
                         "AUC": [batch_auc_out],
                         "StatPosOut": [batch_stat_pos],
                         "StatNegOut": [batch_stat_neg]
                     })
T
tangwei12 已提交
275
    # Global AUC
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
    helper.append_op(type="auc",
                     inputs={
                         "Predict": [input],
                         "Label": [label],
                         "StatPos": [stat_pos],
                         "StatNeg": [stat_neg]
                     },
                     attrs={
                         "curve": curve,
                         "num_thresholds": num_thresholds,
                         "slide_steps": 0
                     },
                     outputs={
                         "AUC": [auc_out],
                         "StatPosOut": [stat_pos],
                         "StatNegOut": [stat_neg]
                     })
T
tangwei12 已提交
293 294 295
    return auc_out, batch_auc_out, [
        batch_stat_pos, batch_stat_neg, stat_pos, stat_neg
    ]