all_reduce.py 3.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.fluid.framework as framework
from paddle.distributed.communication import stream as stream
from paddle.distributed.communication.reduce import ReduceOp


def all_reduce(tensor, op=ReduceOp.SUM, group=None, sync_op=True):
    """

    Reduce a tensor over all ranks so that all get the result.
    As shown below, one process is started with a GPU and the data of this process is represented
    by its group rank. The reduce operator is sum. Through all_reduce operator,
    each GPU will have the sum of the data from all GPUs.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/allreduce.png
        :width: 800
        :alt: all_reduce
        :align: center

    Args:
        tensor (Tensor): The input Tensor. It also works as the output Tensor. Its data type
            should be float16, float32, float64, int32, int64, int8, uint8 or bool.
        op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.MIN|ReduceOp.PROD, optional): The operation used. Default value is ReduceOp.SUM.
        group (Group, optional): The group instance return by new_group or None for global default group.
        sync_op (bool, optional): Wether this op is a sync op. Default value is True.

    Returns:
        Return a task object.

    Examples:
        .. code-block:: python

            # required: distributed
            import paddle
            import paddle.distributed as dist

            dist.init_parallel_env()
            if dist.get_rank() == 0:
                data = paddle.to_tensor([[4, 5, 6], [4, 5, 6]])
            else:
                data = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            dist.all_reduce(data)
            print(data)
            # [[5, 7, 9], [5, 7, 9]] (2 GPUs)
    """
    if not framework._in_legacy_dygraph():
        return stream.all_reduce(tensor,
                                 op=op,
                                 group=group,
                                 sync_op=sync_op,
                                 use_calc_stream=False)

    # code below will be removed after we remove the old dygraph
    use_calc_stream = sync_op
    ring_id = 0 if group is None else group.id
    if op == ReduceOp.SUM:
        return paddle._legacy_C_ops.c_allreduce_sum_(tensor, 'use_calc_stream',
                                                     use_calc_stream, 'ring_id',
                                                     ring_id)
    elif op == ReduceOp.MAX:
        return paddle._legacy_C_ops.c_allreduce_max_(tensor, 'use_calc_stream',
                                                     use_calc_stream, 'ring_id',
                                                     ring_id)
    elif op == ReduceOp.MIN:
        return paddle._legacy_C_ops.c_allreduce_min_(tensor, 'use_calc_stream',
                                                     use_calc_stream, 'ring_id',
                                                     ring_id)
    elif op == ReduceOp.PROD:
        return paddle._legacy_C_ops.c_allreduce_prod_(tensor, 'use_calc_stream',
                                                      use_calc_stream,
                                                      'ring_id', ring_id)
    else:
        raise ValueError("Unknown parameter: {}.".format(op))