nets.py 2.9 KB
Newer Older
F
fengjiayi 已提交
1 2 3 4 5 6 7 8 9
import paddle.v2.framework.layers as layers


def simple_img_conv_pool(input,
                         filter_size,
                         num_filters,
                         pool_size,
                         pool_stride,
                         act,
Q
Qiao Longfei 已提交
10
                         pool_type='max',
F
fengjiayi 已提交
11 12
                         program=None,
                         init_program=None):
F
fengjiayi 已提交
13 14 15 16 17
    conv_out = layers.conv2d(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
        act=act,
F
fengjiayi 已提交
18 19
        program=program,
        init_program=init_program)
F
fengjiayi 已提交
20 21 22 23

    pool_out = layers.pool2d(
        input=conv_out,
        pool_size=pool_size,
Q
Qiao Longfei 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
        pool_type=pool_type,
        pool_stride=pool_stride,
        program=program,
        init_program=init_program)
    return pool_out


def img_conv_group(input,
                   conv_num_filter,
                   pool_size,
                   conv_padding=1,
                   conv_filter_size=3,
                   conv_act=None,
                   conv_with_batchnorm=False,
                   conv_batchnorm_drop_rate=None,
                   pool_stride=1,
                   pool_type=None,
                   program=None,
                   init_program=None):
    """
    Image Convolution Group, Used for vgg net.
    """
    tmp = input
    assert isinstance(conv_num_filter, list) or \
           isinstance(conv_num_filter, tuple)

    def __extend_list__(obj):
        if not hasattr(obj, '__len__'):
            return [obj] * len(conv_num_filter)
        else:
            return obj

    conv_padding = __extend_list__(conv_padding)
    conv_filter_size = __extend_list__(conv_filter_size)
    conv_with_batchnorm = __extend_list__(conv_with_batchnorm)
    conv_batchnorm_drop_rate = __extend_list__(conv_batchnorm_drop_rate)

    for i in xrange(len(conv_num_filter)):
        local_conv_act = conv_act
        if conv_with_batchnorm[i]:
            local_conv_act = None

        tmp = layers.conv2d(
            input=tmp,
            num_filters=conv_num_filter[i],
            filter_size=conv_filter_size[i],
            padding=conv_padding[i],
            act=local_conv_act,
            program=program,
            init_program=init_program)

        if conv_with_batchnorm[i]:
            tmp = layers.batch_norm(
                input=tmp,
                act=conv_act,
                program=program,
                init_program=init_program)
            drop_rate = conv_batchnorm_drop_rate[i]
            if abs(drop_rate) > 1e-5:
                tmp = layers.dropout(
                    x=tmp,
                    dropout_prob=drop_rate,
                    program=program,
                    init_program=init_program)

    pool_out = layers.pool2d(
        input=tmp,
        pool_size=pool_size,
        pool_type=pool_type,
F
fengjiayi 已提交
93
        pool_stride=pool_stride,
F
fengjiayi 已提交
94 95
        program=program,
        init_program=init_program)
F
fengjiayi 已提交
96
    return pool_out