import 'babel-polyfill'; import Paddle from '../../src/paddle/paddle'; import IO from '../../src/feed/imageFeed'; /** * @file model demo mnist 入口文件 * @author wangqun@baidu.com * */ const pic = document.getElementById('pic'); const io = new IO(); let model = {}; async function run() { let feed = io.process({ input: pic, params: { targetShape: [1, 3, 320, 320], // 目标形状 为了兼容之前的逻辑所以改个名 scale: 256, // 缩放尺寸 width: 224, height: 224, // 压缩宽高 shape: [3, 224, 224], // 预设tensor形状 mean: [0.485, 0.456, 0.406], // 预设期望 std: [0.229, 0.224, 0.225] // 预设方差 }}); console.dir(['feed', feed]); const path = 'model/mnist'; const MODEL_CONFIG = { dir: `/${path}/`, // 存放模型的文件夹 main: 'model.json', // 主文件 }; const paddle = new Paddle({ urlConf: MODEL_CONFIG, options: { multipart: false, dataType: 'json' } }); model = await paddle.load(); let inst = model.execute({ input: feed }); // 其实这里应该有个fetch的执行调用或者fetch的输出 let result = await inst.read(); // let inst = model.execute({input: cat}); // let res = inst.read(); console.dir(['result', result]); // var fileDownload = require('js-file-download'); // fileDownload(res, 'result.csv'); } run();