import 'babel-polyfill'; import Paddle from '../../src/paddle/paddle'; import Utils from '../../src/utils/utils'; const unitPath = { 'conv2d': 'model.test.conv2d.json', 'batchnorm': 'model.test.batchnorm.json', 'mul': 'model.test.mul.json', 'pool2d': 'model.test.pool2d.json', 'relu': 'model.test.relu.json', 'scale': 'model.test.scale.json', 'softmax': 'model.test.softmax.json', 'relu6' : 'model.test.relu6.json', 'elementwise' : 'model.test.elementwise_add.json', 'depthwise' : 'model.test.depthwise_conv2d.json', 'reshape' : 'model.test.reshape.json', 'bilinear_interp' : 'model.test.bilinear_interp.json', 'transpose' : 'model.test.transpose.json', 'conv2d_transpose': 'model.test.conv2d_transpose.json', 'elementwise_add': 'model.test.elementwise_add.json', 'concat': 'model.test.concat.json', 'split': 'model.test.split.json' }; // 制定运行的 op const modelType = 'conv2d_transpose'; // 制定运行的 op const unitData = unitPath[modelType]; let datas; let output; async function run() { const path = 'test/unitData'; const MODEL_CONFIG = { dir: `/${path}/`, // 存放模型的文件夹 main: unitData, // 主文件 }; const paddle = new Paddle({ urlConf: MODEL_CONFIG, options: { test: true } }); let model = await paddle.load(); datas = model.graph.data; output = deepCopy(datas); model.graph.weightMap.forEach(op => { const type = op.type; if (type !== 'feed' && type !== 'fetch') { console.log(op.type); console.log("this is standard output:"); console.log(op.outputs.Output); model.graph.buildOpData(op); } }); const executor = model.graph.weightMap; model.graph.execute_(executor[0]); // NHWC输出 let result = await model.graph.inst.read(); // 获取 NHWC -> NCHW 的 输出 const outputNCHWShape = getOutputShape(); const outputNHWCShape = nchwShape2nhwcShape(outputNCHWShape); let nchwResult = Utils.nhwc2nchw(result, outputNHWCShape); const formatData = Utils.formatReadData(nchwResult, outputNCHWShape); console.log('NCHW RESULT'); console.log(formatData); } run(); function deepCopy (data) { return JSON.parse(JSON.stringify(data)); } const getResult = function (id) { const data = output.ops.filter(item => id === item.type); return getoutputs(data[0]); }; const getValue = function(name, datas) { return datas.vars.find(item => name === item.name); }; const OUTPUT_KEYS = ['out', 'y', 'output']; const getoutputs = function (data) { const outputkey = Object.keys(data.outputs).find(key => OUTPUT_KEYS.includes(key.toLowerCase())); const outputTensorId = data.outputs[outputkey].slice(-1)[0]; const outputTensor = getValue(outputTensorId, output); return outputTensor; }; function getOutputShape () { var outputTensor = getResult(modelType); return outputTensor.shape; } // NCHW shape 2 NHWC shape function nchwShape2nhwcShape(nchw) { let batchNCHW = nchw; if (nchw.length < 4) { let batch = []; for (let i = 0; i < (4 - nchw.length); i++) { batch.push(1); } batchNCHW = batch.concat(nchw); } const N = batchNCHW[0]; const C = batchNCHW[1]; const H = batchNCHW[2]; const W = batchNCHW[3]; return [N, H, W, C]; }