/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include "io/paddle_inference_api.h" using namespace paddle_mobile; PaddleMobileConfig GetConfig() { PaddleMobileConfig config; config.precision = PaddleMobileConfig::FP32; config.device = PaddleMobileConfig::kCPU; config.model_dir = "../models/mobilenet/"; config.thread_num = 4; return config; } int main() { PaddleMobileConfig config = GetConfig(); auto predictor = CreatePaddlePredictor(config); float data[1 * 3 * 224 * 224] = {1.0f}; PaddleTensor tensor; tensor.shape = std::vector({1, 3, 224, 224}); tensor.data = PaddleBuf(data, sizeof(data)); tensor.dtype = PaddleDType::FLOAT32; std::vector paddle_tensor_feeds(1, tensor); PaddleTensor tensor_out; tensor_out.shape = std::vector({}); tensor_out.data = PaddleBuf(); tensor_out.dtype = PaddleDType::FLOAT32; std::vector outputs(1, tensor_out); assert(predictor->Run(paddle_tensor_feeds, &outputs)); float* data_o = static_cast(outputs[0].data.data()); for (size_t j = 0; j < outputs[0].data.length() / sizeof(float); ++j) { std::cout << "output[" << j << "]: " << data_o[j] << std::endl; } return 0; }