// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/arm/write_to_array_compute.h" #include "lite/backends/arm/math/funcs.h" namespace paddle { namespace lite { namespace kernels { namespace arm { void WriteToArrayCompute::PrepareForRun() {} void WriteToArrayCompute::Run() { auto& ctx = this->ctx_->template As(); auto& param = this->Param(); CHECK_EQ(param.I->numel(), 1) << "input2 should have only one element"; const auto* x_data = param.X->data(); int id = param.I->data()[0]; int id_test = param.I->data()[0]; if (id >= param.Out->size()) { for (int i = param.Out->size(); i < id + 1; i++) { lite::Tensor tmp; param.Out->push_back(tmp); } } (*param.Out)[id].Resize(param.X->dims()); auto out_lod = (*param.Out)[id].mutable_lod(); *out_lod = param.X->lod(); auto* o_data = (*param.Out)[id].mutable_data(TARGET(kHost)); int input_size = param.X->numel(); memcpy(o_data, x_data, sizeof(float) * input_size); } } // namespace arm } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(write_to_array, kARM, kFloat, kNCHW, paddle::lite::kernels::arm::WriteToArrayCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))}) .BindInput("I", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("Out", {LiteType::GetTensorListTy(TARGET(kARM))}) .Finalize();