// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/fpga/fc_compute.h" #include "lite/kernels/fpga/activation_compute.h" #include "lite/backends/fpga/KD/debugger.hpp" #include "lite/core/op_registry.h" #include "lite/core/type_system.h" namespace paddle { namespace lite { namespace kernels { namespace fpga { using float16 = zynqmp::float16; void FcCompute::PrepareForRun() { auto& param = this->Param(); // ==================================================== zynqmp::FullyConnectedParam& fc_param = pe_.param(); param.output->mutable_data(); fc_param.input = param.input->ZynqTensor(); fc_param.output = param.output->ZynqTensor(); fc_param.filter = param.w->ZynqTensor(); fc_param.bias = param.bias->ZynqTensor(); if (activation_map.count(param.activation_type)) { fc_param.activeParam.type = activation_map[param.activation_type]; } pe_.init(); pe_.apply(); } void FcCompute::Run() { pe_.dispatch(); #ifdef FPGA_PRINT_TENSOR zynqmp::FullyConnectedParam& fc_param = pe_.param(); Debugger::get_instance().registerOutput("fc", fc_param.output); #endif } } // namespace fpga } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL( fc, kFPGA, kFP16, kNHWC, paddle::lite::kernels::fpga::FcCompute, def) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))}) .BindInput("W", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .Finalize();