// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "lite/backends/cuda/blas.h" #include "lite/core/context.h" #include "lite/core/kernel.h" #include "lite/core/types.h" #include "lite/operators/op_params.h" namespace paddle { namespace lite { namespace kernels { namespace cuda { template void mul_compute(const lite::cuda::Blas& blas, const T* x, int x_h, int x_w, const T* y, int y_h, int y_w, T* out) { float alpha = 1.0; float beta = 0.0; /* blas.sgemm(CUBLAS_OP_N, CUBLAS_OP_N, x_h, y_w, x_w, &alpha, x, x_w, y, y_w, &beta, out, x_h); */ blas.sgemm(CUBLAS_OP_N, CUBLAS_OP_N, y_w, x_h, y_h, &alpha, y, y_w, x, x_w, &beta, out, y_w); } class MulCompute : public KernelLite { public: using param_t = operators::MulParam; void Run() override { CHECK(ctx_) << "running context should be set first"; auto& context = this->ctx_->template As(); CHECK(context.cublas_fp32()) << "blas should init first"; auto& blas = *context.cublas_fp32(); auto& param = this->Param(); const auto* x_data = param.x->data(); const auto* y_data = param.y->data(); auto* out_data = param.output->mutable_data(TARGET(kCUDA)); int x_h = static_cast( param.x->dims().Slice(0, param.x_num_col_dims).production()); int x_w = static_cast( param.x->dims() .Slice(param.x_num_col_dims, param.x->dims().size()) .production()); int y_h = static_cast( param.y->dims().Slice(0, param.y_num_col_dims).production()); int y_w = static_cast( param.y->dims() .Slice(param.y_num_col_dims, param.y->dims().size()) .production()); CHECK_EQ(x_w, y_h) << "x_w must be equal with y_h"; LOG(INFO) << x_h << " " << x_w << " " << y_h << " " << y_w; mul_compute(blas, x_data, x_h, x_w, y_data, y_h, y_w, out_data); } virtual ~MulCompute() = default; }; } // namespace cuda } // namespace kernels } // namespace lite } // namespace paddle