// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/cuda/dropout_compute.h" #include #include "lite/backends/cuda/math/scale.h" namespace paddle { namespace lite { namespace kernels { namespace cuda { void DropoutCompute::Run() { auto& param = Param(); const float* x_data = param.x->data(); float* out_data = param.output->mutable_data(TARGET(kCUDA)); int num = param.x->dims().production(); const float prob_data = param.dropout_prob; float scale = 1.0f; if (param.dropout_implementation == "downgrade_in_infer") { scale = 1.0f - prob_data; } lite::cuda::math::scale(num, x_data, out_data, scale, 0); } } // namespace cuda } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(dropout, kCUDA, kFloat, kNCHW, paddle::lite::kernels::cuda::DropoutCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kCUDA))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kCUDA))}) .BindOutput("Mask", {LiteType::GetTensorTy(TARGET(kCUDA))}) .Finalize();