// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include "lite/core/kernel.h" #include "lite/core/op_lite.h" #include "lite/core/scope.h" #include "lite/core/tensor.h" #include "lite/operators/op_params.h" #include "lite/utils/all.h" namespace paddle { namespace lite { namespace operators { class ConvOpLite : public OpLite { public: ConvOpLite() {} explicit ConvOpLite(const std::string& type) : OpLite(type) {} bool CheckShape() const override; bool InferShape() const override; bool SmartInferShape() override; // TODO(Superjomn) replace framework::OpDesc with a lite one. bool AttachImpl(const cpp::OpDesc& op_desc, lite::Scope* scope) override { auto X = op_desc.Input("Input").front(); auto Filter = op_desc.Input("Filter").front(); auto Out = op_desc.Output("Output").front(); param_.x = scope->FindVar(X)->GetMutable(); param_.filter = scope->FindVar(Filter)->GetMutable(); param_.output = scope->FindVar(Out)->GetMutable(); param_.strides = op_desc.GetAttr>("strides"); auto paddings = op_desc.GetAttr>("paddings"); param_.groups = op_desc.GetAttr("groups"); auto dilations = op_desc.GetAttr>("dilations"); param_.dilations = std::make_shared>(dilations); // optional params std::vector input_arg_names = op_desc.InputArgumentNames(); if (std::find(input_arg_names.begin(), input_arg_names.end(), "Bias") != input_arg_names.end()) { auto bias_arguments = op_desc.Input("Bias"); if (bias_arguments.size() > 0) { auto bias_var = scope->FindVar(bias_arguments.front()); if (bias_var != nullptr) { param_.bias = const_cast(&(bias_var->Get())); } } } if (std::find(input_arg_names.begin(), input_arg_names.end(), "ResidualData") != input_arg_names.end()) { auto res_data_arguments = op_desc.Input("ResidualData"); if (res_data_arguments.size() > 0) { auto residual_data_var = scope->FindVar(res_data_arguments.front()); if (residual_data_var != nullptr) { param_.residualData = const_cast( &(residual_data_var->Get())); } } } if (op_desc.HasAttr("with_act") && op_desc.GetAttr("with_act")) { param_.activation_param.has_active = true; auto act_type = op_desc.GetAttr("act_type"); if (act_type == "relu") { param_.activation_param.active_type = lite_api::ActivationType::kRelu; param_.fuse_relu = true; } else if (act_type == "relu6") { param_.activation_param.active_type = lite_api::ActivationType::kRelu6; param_.activation_param.Relu_clipped_coef = op_desc.GetAttr("fuse_brelu_threshold"); // 6.f } else if (act_type == "leaky_relu") { param_.activation_param.active_type = lite_api::ActivationType::kLeakyRelu; param_.activation_param.Leaky_relu_alpha = op_desc.GetAttr("leaky_relu_alpha"); } else { CHECK(false) << "The fused conv only supports fuse with relu and leaky relu"; } } if (op_desc.HasAttr("padding_algorithm")) { padding_algorithm_ = op_desc.GetAttr("padding_algorithm"); } // For Int8 if (op_desc.HasAttr("enable_int8")) { param_.enable_int8 = op_desc.GetAttr("enable_int8"); if (op_desc.HasAttr("input_scale")) param_.input_scale = op_desc.GetAttr("input_scale"); if (op_desc.HasAttr("weight_scale")) param_.weight_scale = op_desc.GetAttr>("weight_scale"); if (op_desc.HasAttr("output_scale")) { param_.output_scale = op_desc.GetAttr("output_scale"); } } // 2-pad to 4-pad if (paddings.size() == 2L) { for (size_t i = 0; i < param_.strides.size(); ++i) { int copy_pad = *(paddings.begin() + 2 * i); paddings.insert(paddings.begin() + 2 * i + 1, copy_pad); } } else { if (paddings.size() != 4L) { LOG(FATAL) << "Paddings size should be the same or twice as the input size."; } } param_.paddings = std::make_shared>(paddings); return true; } void AttachKernel(KernelBase* kernel) override { kernel->SetParam(param_); } std::string DebugString() const override { return "conv2d"; } private: mutable ConvParam param_; std::string padding_algorithm_{""}; }; // update padding dilation void UpdatePaddingAndDilation(std::vector* paddings, std::vector* dilations, const std::vector& strides, const std::string padding_algorithm, const lite::DDim data_dims, const lite::DDim& ksize); } // namespace operators } // namespace lite } // namespace paddle